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A Large Class of Strategy-Proof Exchange Rules
with Single-Peaked Preferences∗

Peng Liu†

February 28, 2018

Abstract

We study the classical house exchange problem (Shapley and Scarf (1974)) and identi-
fied a large class of rules, each of which is strategy-proof, efficient, and individually rational
with single-peaked preferences. These rules are generalizations of Gale’s top trading cycles
rule: In each step a subset of houses are allowed to be traded along top trading cycles and
in particular, the next step subset of trading houses may depend on the exchanges happened
already. We believe that the flexibility introduced by this class of rules is desirable when
the designer faces some context-specific requirements.

Keywords: Top trading cycles; strategy-proof; single-peaked;

JEL Classification: C78, D71.

1 Introduction

We study the so-called “house exchange problem” where some privately owned objects
need to be reallocated to their owners without money transfer. For this problem Shapley and
Scarf (1974) introduced the top trading cycles rule (TTC hereafter) and attributed it to David
Gale. The TTC rule always selects a core allocation, which implies efficiency and individual
rationality. Later it was proved to be strategy-proof by Roth (1982). After that, it was shown by
Ma (1994) to be the unique strategy-proof, efficient, and individually rational rule.1

Since then the TTC rule has been in the center of designing mechanisms for allocating in-
divisible objects without transfer and has been adapted to deal with variants of the problems.
Examples include the hierarchical exchange rules (Pápai (2000)) and the trading cycles rules
(Pycia and Ünver (2017)) for the house allocation problems and the so-called you-request-
my-house I-get-your-turn rules (Abdulkadiroğlu and Sönmez (1999)) for the house allocation
problems with existing tenants. It has also been studied and compared to some other rules
for the school choice problems (Abdulkadiroglu and Sönmez (2003)) and the kidney exchange

∗I own great debt to Shurojit Chatterji for motivating discussions and his patient reviews of the drafts.
†School of Economics, Singapore Management University, Singapore.
1Some other proofs of the uniqueness can be found in Svensson (1999), Anno (2015), and Sethuraman (2016).
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problems (Roth et al. (2004)). Recently it has been adapted for the problem of trading frac-
tional shares and probabilities rather than intact objects. Examples include Kesten (2009), Aziz
(2015), and Altuntas and Phan (2017) among others.

In this paper, we revisit the house exchange problem and notice that some flexibility required
by problem-specific context can not be provided by the TTC rule. Below is an example, which
indicates that there are situations where we want to adjust the endowment before applying the
TTC rule.

Example 1. Let I = {1, 2, 3, 4} be four agents and each agent i owns a house hi. Assume that
their preferences are Pi’s as follows.

P1 : h4 h3 h2 h1

P2, P3, P4 : h1 h2 h3 h4

where P1 reads “h4 is strictly better than h3, h3 is strictly better than h2, and h2 is strictly better
than h1.” If we employ the TTC rule, agent 1 and 4 exchange their houses and agent 2 and 3

remain unchanged, as below

TTC(P ) =

(
1 2 3 4
h4 h2 h3 h1

)
However, suppose agent 2 is a senior citizen and we want the final allocation to favor him,

which in the current case means that we want him to get h1, the only way to make him better
off. Notice that agent 1 treats h2 as acceptable. Then the question becomes “Should we let
agent 1 and 2 exchange their endowments before the application of the TTC rule?” If we do
so, the allocation will be as follows, which achieves our goal without sacrifice in efficiency or
individual rationality. (

1 2 3 4
h4 h1 h3 h2

)
However, with slight reflexion, we notice a problem: how about incentive compatibility?

In particular, we have to announce the rule before agents reporting their preference. If we
announce the rule as that, in the first step, we give agents 1 and 2 a chance to exchange their
endowments and in the second step the TTC rule is implemented, is there any incentive for any
agent to misrepresent her preference?

Motivated by the above observation, we introduce a large class of rules, called dynamic
TTC rules, within which Gale’s TTC rule is a special case. A dynamic TTC rule selects the
final allocation by several steps. In each step the TTC rule restricted to a subset of houses,
equivalently a subset of agents, is implemented. As in the above example, in the first step, the
TTC rule restricted to h1 and h2, equivalently agents 1 and 2 as they own these two houses, is
implemented and in the second step the TTC rule restricted toH is implemented. Generally, the
next step subset of trading houses may depend on the temporary allocation from the previous
steps. Such path-dependence is illustrated below.

Example 1 (Continued). In the first step, the TTC rule restricted to h1 and h2 will be im-
plemented. After that, if agents 1 and 2 exchange their houses, the TTC rule restricted to
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{h1, h2, h3} will be implemented. If otherwise, the TTC rule restricted to H will be imple-
mented. For the preferences we listed, the allocation selected will be(

1 2 3 4
h3 h1 h2 h4

)
Another class of situations where such a dynamic TTC rule is called upon is that some

agents are delayed who can not show up until tomorrow while the others who are ready for the
exchange may request trading among themselves today. The example below illustrates such a
situation.

Example 2. Let I = {1, 2, 3, 4} be four agents and each agent i owns a house hi. Let in addition
their preferences be as follows

P1 : h4 h3 h2 h1

P3 : h2 h1 h3 h4

P2, P4 : h1 h2 h3 h4

Suppose due to some personal issue agent 4 can not show up until tomorrow while all
the others are already ready for exchange. Now if we announce that TTC rule restricted to
{h1, h2, h3} will be implemented today and when agent 4 comes tomorrow, Gale’s TTC rule
will be implemented, the final allocation will be(

1 2 3 4
h4 h1 h2 h3

)
.

If instead we insist that we wait for agent 4 and implement Gale’s TTC rule tomorrow, the
allocation will be

TTC(P ) =

(
1 2 3 4
h4 h2 h3 h1

)
.

It is evident that the two-step dynamic TTC rule selects an allocation which every one of the
present agents treats at least as good as the allocation selected by Gale’s TTC, with someone
strictly bettered off. This method seems to be justified especially when we consider the cost
incurred by letting them wait for the whole day.

However, the same problem arises: is this dynamic TTC rule strategy-proof?

Since in every step a TTC rule restricted to a subset of trading houses is implemented,
whenever an agent exchanges her holding house with some other, she gets better off and hence
every such dynamic TTC rule always selects an individually rational allocation.

In order to secure efficiency, we require that the procedure of a dynamic TTC always ter-
minates with a TTC restricted to the whole set H . This is a natural specification in relevant
applications. A counterexample is the second dynamic TTC rule in Example 1, in which a path
ends with {h1, h2, h3}, the allocation selected is inefficient. However, notice that after several
steps of TTC restricted to various subsets of trading houses, we should expect that many agents
will not exchange with anybody in the last step although they are allowed to do so. As in the
dynamic TTC rule in Example 2, although in the next day every body is allowed to trade, only
agents 1 and 4 will exchange their houses.
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Knowing that every dynamic TTC rule is efficient and individually rational, we focus on
strategy-proofness. To do so, notice a unique feature of dynamic TTC rules that is not in any
existing generalization of TTC: incentive compatibility now involves essentially trade-offs be-
tween temporary improvement in a certain step and the opportunities of exchanges in future
steps. In particular, it might be profitable for an agent to sacrifice the available improvement
in a certain step in order to make herself stand on a preferred trading condition for some future
exchanges. Such a unique feature arises because generally in a certain step not all the houses
are available for exchange, which is not true in any of the generalizations mentioned in the
opening of the paper. In those generalizations, all the houses are available for exchanges from
the beginning.

Due to the fact that every dynamic TTC rule is efficient and individually rational, an im-
plication of Ma (1994)’s characterization is that, on the universal domain, the class of dynamic
TTC rules collapses to Gale’s TTC rule when strategy-proofness is imposed.

However, if the admissible preferences are single-peaked, an interesting subclass of dynamic
TTC rules emerges when we impose strategy-proofness. In a house exchange problem, single-
peakedness may be defined with respect to the size of houses or the market value of them. In
this paper, we assume that houses are ordered according to size. Then single-peakedness means
that an agent’s satisfaction from a house increases with size but just to a certain value and then
decreases. Given that the houses are ordered by market value, single-peakedness means that,
according to her financial status, an agent calculates her optimal expenditure on housing. Then
a house is better if its market value is closer to her optimal expenditure.

It is evident that not every dynamic TTC rule is strategy-proof on the single-peaked do-
main. However, we found that as long as every subset of trading houses is a neighborhood, the
corresponding dynamic TTC rule is strategy-proof, where a neighborhood refers to a subset of
houses identified by an interval of size. Bade (2017) recently introduced a rule on the single-
peaked domain called “crawler”, which is shown to be a special case of our dynamic TTC rules
with neighborhoods.

The next interesting question is naturally: are neighborhood trading subsets necessary for a
dynamic TTC rule to be strategy-proof? We answer this question with the restriction to those
rules without path-dependence. In other words, we focus on the dynamic TTC rules where the
set of trading houses in the next step does not depend on the temporary allocation from the
previous steps. Within these rules, we show the necessity of neighborhoods up to outcome-
equivalence. In particular, whenever a dynamic TTC rule without path-dependence is strategy-
proof it is equivalent to a dynamic TTC rule with neighborhoods, in the sense that, for each
admissible economy, they select the same allocation.

Finally we address the question: can we expand the single-peaked preference domain while
reserving strategy-proofness of the dynamic TTC rules with neighborhoods? The answer is
definitely in negative. In particular, we show whenever a non-single-peaked preference is made
admissible, there is some dynamic TTC rule with neighborhoods which becomes manipulable.

The sequel of the paper is organized as follows. Section 2 introduces the formal definitions
and notations. Section 3 defines the class of dynamic TCC rules. Section 4 studies the strategy-
proofness of these rules and Section 5 concludes.

4



2 House Exchange Problems

Let I ≡ {1, · · · , n} be the set of agents and H ≡ {h1, · · · , hn} the set of houses. An
allocation is an one-to-one mapping m : I → H and the set of all allocations is denoted as
M . The endowment is an allocation, denoted as e ∈M . Without loss of generality we fix it as
such that e(i) = hi for all i ∈ I .

Each agent i ∈ I is equipped with a strict preference Pi on houses, i.e., an antisymmetric,
transitive, and complete binary relation on H .2 For an arbitrary preference Pi and an arbitrary
nonempty subset Ĥ ∈ 2H\∅, let τ(Pi, Ĥ) denote the favorite object in Ĥ , i.e., τ(Pi, Ĥ) = h

such that h Pi h
′ for all h′ ∈ Ĥ\{h}. In particular, let τ(Pi) ≡ τ(Pi, H).

Let P be the set of all strict preferences and we call P the universal preference domain.
For an specific class of allocation problems, the admissible preferences might not be the entire
universal preference domain but a subset D ⊂ P . We call this subset the domain of admissible
preferences.

An admissible economy is a tuple (I,H, P, e), where P = (Pi)i∈I ∈ DI is a profile of
admissible preferences, one for each agent. Throughout the paper we fix I , H , and e. Hence
we denote an admissible economy simply as P ∈ DI . An exchange rule, or simply a rule, is a
mapping ϕ : DI →M that selects for each admissible economy an allocation.

We will impose some axioms on a desirable rule. The first deals with incentive compatibility,
strategy-proofness, which requires that reporting the true preference in the direct revelation
game is always a weakly dominant strategy.

Definition 1. A rule ϕ : DI → M is strategy-proof if and only if, for all P ∈ DI and all
P ′i ∈ D, ϕi(P ) 6= ϕi(P

′
i , P−i) implies ϕi(P ) Pi ϕi(P

′
i , P−i).

The second is efficiency in Pareto sense: the allocation can not be improve in a feasible way
that some agent gets a better house without hurting any other agent.

Definition 2. For an arbitrary admissible economy, P ∈ DI , an allocation x ∈M is efficient if
and only if @y ∈ M such that y 6= x and ∀i ∈ I , y(i) 6= x(i)⇒ y(i) Pi x(i). A rule is efficient
if it selects for each admissible economy an efficient allocation.

The third requires that no agent gets a house worse than her endowment, which encourages
participation.

Definition 3. For an arbitrary admissible economy, P ∈ DI , an allocation x ∈M is individu-
ally rational if and only if ∀i ∈ I , x(i) 6= hi ⇒ x(i) Pi hi. A rule is individually rational if it
selects for each admissible economy an individually rational allocation.

3 Dynamic Top Trading Cycles Rules

As a preparation for the definition of our rules, we adapt Gale’s TTC rule by restricting the
set of houses that are allowed to be traded, which in fact also restricts the set of agents who are
allowed to trade.

2A binary relation Pi is antisymmetric if h Pi h
′ and h′ Pi h imply h = h′, transitive if h Pi h

′ and h′ Pi h
′′

imply h Pi h
′′, and complete if either h Pi h

′ or h′ Pi h holds for arbitrary h and h′.
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Definition 4. Let TTC : DI ×M × (2H\∅) → M be such that for an arbitrary preference
profile P ∈ Dn, an arbitrary allocation m ∈ M , and a nonempty subset of houses Ĥ ⊂ H , let
Î ≡ {i ∈ I : m(i) ∈ Ĥ} and m̂ = TTC(P,m, Ĥ) is a new allocation such that m̂(i) = m(i)

for all i ∈ I\Î and m̂(i) for i ∈ Î is specified below

• Let Ĩ1 = Î and H̃1 = Ĥ .

• Round 1: Each agent i ∈ Ĩ1 points to the owner of her favorite house in H̃1, i.e., i ∈ Ĩ1

points to m−1(τ(Pi, H̃1)). Since Ĩ1 is finite, there is at least one cycle. Let C1 ⊂ Ĩ1

denote the collection of agents who are involved in a cycle. Let for each i ∈ C1, m̂(i) =

τ(Pi, H̃1). In addition, let Ĩ2 = Ĩ1\C1 and H̃2 = H̃1\{m(i) : i ∈ C1}. If Ĩ2 6= ∅, proceed
to the next round.

• ...

• Round t: Each agent i ∈ Ĩt points to the owner of her favorite house in H̃t, i.e., i ∈ Ĩt
points to m−1(τ(Pi, H̃t)). Since Ĩt is finite, there is at least one cycle. Let Ct ⊂ Ĩt
denote the collection of agents who are involved in a cycle. Let for each i ∈ Ct, m̂(i) =

τ(Pi, H̃t). In addition, let Ĩt+1 = Ĩt\Ct and H̃t+1 = H̃t\{m(i) : i ∈ Ct}. If Ĩt+1 6= ∅,
proceed to the next round.

Since in each round there is at least one cycle formed and Î is finite, this algorithm termi-
nates in finite rounds.

We define a trading tree which is later used as a parameter to define a dynamic TTC rule.
Let (V,Q) be a rooted tree,3 where V 6= ∅ is the vertex set and Q ⊂ V ×V is the set of arcs.

Let v0 denote the root of the tree, i.e., @v ∈ V such that (v, v0) ∈ Q. For each v ∈ V \{v0}
different from the root, there is a unique path from the root to v. We denote this path as P (v0, v),
which is a sequence of a subset of the vertex set v1, · · · , vk, vk+1, · · · , vK such that v1 = v0,
vK = v, and (vk, vk+1) ∈ Q for all k = 1, · · · , K − 1. We call a vertex v terminal if there is
no vertex v′ such that (v, v′) ∈ Q. In addition let Z be the set of terminal vertices. For each
nonterminal vertex v ∈ V \Z, let Qv = {(v, v′) ∈ Q} be the set of arcs directed away from v.

Let the rooted tree be labeled. In particular, the vertex set V is labeled by nonempty subsets
of houses, i.e., V : V → 2H\∅ and the arc set is labeled by allocations, i.e., Q : Q→M .

We call a labeled rooted tree T = (V,Q,V ,Q) a trading tree if the following two con-
ditions are satisfied. Condition C1 concerns the labeling of vertices and requires that a vertex
is labeled by the whole set H if and only if it is terminal.4 Conditions C2 concerns the arcs.
It can be seen as a composition of two restrictions. First, the number of arcs originated from
each non-terminal vertex is exactly n!. Second, the labels of these n! arcs are distinct from each
other. Formally:

C1: For each vertex v ∈ V , V(v) = H if and only if v ∈ Z.
C2: For each non-terminal vertex v ∈ V \Z, Q restricted to Qv is an one-to-one mapping

from Qv to M .
3A rooted tree is a tree with a vertex designated as the root so that a distance from the root can be calculated

for each node and an arc can be treated as directed away from the root.
4As we discussed in the introduction, we impose this condition in order to guarantee efficiency.
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Fix a trading tree T = (V,Q,V ,Q) and an admissible economy P ∈ DI , the dynamic TTC
rule specifies an allocation by implementing the algorithm below. First, we check label of the
root V(v0) and let it be the first subset of trading houses Ĥ1. Implement the TTC restricted to
Ĥ1, and denote the resulting allocation as m1 = TTC(P, e, Ĥ1). Then we identify the unique
arc (v0, v) ∈ Qv0 such that Q(v0, v) = m1. Next, let the second subset of trading houses be
the label of v, i.e., Ĥ2 = V(v) and implement TTC(P,m1, Ĥ2). We repeatedly do this until we
arrive at a terminal vertex. Formally

Definition 5. Fix a trading tree T , a dynamic TTC (DTTC) rule is a mapping ϕT : DI → M

which specifies for each admissible economy P an allocation ϕT (P ) by following steps

• Let v1 = v0, Ĥ1 = V(v1) and m1 = TTC(P, e, Ĥ1).

• For each k = 2, · · · , K, let vk ∈ V be such that Q(vk−1, vk) = mk−1, Ĥk = V(vk) and
mk = TTC(P,mk−1, Ĥk), where K is uniquely identified by vK being a terminal vertex.

Several examples of DTTC rules are presented below.

Example 3. Let T = (V,Q,V ,Q) where V = {v0} and Q = ∅. By condition C1, V(v0) = H .
Then the DTTC rule defined accordingly is exactly Gale’s TTC rule.

Example 4. Let T = (V,Q,V ,Q) where V = {v0}∪{vk : k = 1, · · · , n!} and Q = {(v0, vk) :

k = 1, · · · , n!}. The unique non-terminal vertex is v0 and Z = {vk : k = 1, · · · , n!}. Label the
vertices such that V(v0) = {h1, h2} and V(vk) = H for each vk ∈ Z. In addition, label the arcs
by an arbitrary one-to-one mapping form Q to M .

{h1, h2}

H H H

· · · · · ·

The accordingly defined DTTC rule first gives agents 1 and 2 an opportunity to exchange
their houses. After that Gale’s TTC rule is implemented upon the resulting allocation. This is
the formal representation of the first DTTC rule we discussed in Example 1.

Example 5. Let T = (V,Q,V ,Q) where V = {v0} ∪ {v1
k : k = 1, · · · , n!} ∪ {v2

k : k =

1, · · · , n!} and Q = {(v0, v1
k) : k = 1, · · · , n!} ∪ {(v1

1, v
2
k) : k = 1, · · · , n!}. In this case, there

are two non-terminal vertices, v0 and v1
1 . The set of terminal vertices is Z = V \{v0, v1

1}. Label
the vertices such that V(v0) = {h1, h2}, V(v1

1) = {h1, h2, h3}, and V(v) = H for all v ∈ Z. In
addition label the arcs Qv0 by an one-to-one mapping from Qv0 to M such that

Q(v0, v1
1) =

(
1 2 3 · · · n
h2 h1 h3 · · · hn

.

)
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{h1, h2}

{h1, h2, h3}

H H

H H H

· · · · · ·

· · · · · ·

Finally label the remaining arcs by an arbitrary one-to-one mapping from Qv11
to M .

The dynamic top trading cycles rule defined accordingly gives first agents 1 and 2 an op-
portunity to exchange their houses. The next subset of trading houses depends on whether they
really exchanged their houses. If so, the next subset of trading houses is {h1, h2, h3}, followed
by Gale’s TTC rule. And if otherwise, Gale’s TTC is implemented directly. This is the formal
representation of the second DTTC rule in Example 1.

Remark 1. Notice that C2 requires that from each vertex, one arc is presented for each alloca-
tion in M . In our analysis, we fix the endowment e ∈M hence there are many redundant paths
in the tree. For example in the tree presented in Example 4, the only possible changes from the
endowment after the first-step TTC is that agent 1 and 2 exchanged their houses, which means
only two arcs are reachable from v0. However we specify for each one of n! allocations an arc.
We reserve these redundancies deliberately in order to make a DTTC rule applicable whatever
the endowment is.

From the definition, it is evident that whenever an agent exchanges her house with some
other agent, she gets strictly better off. Hence a DTTC rule is individually rational. In addition,
since every path in a trading tree terminates with the full set H , every possible Pareto improve-
ment has been exploited and hence a DTTC rule is efficient. The proposition below presents
these two observations without a proof.

Proposition 1. A DTTC rule is efficient and individually rational.

A specially interesting sub-class of DTTC rules is the collection of those defined by degen-
erated trading trees. A trading tree is degenerated if two vertices are labeled the same as long
as the distances away from the root are the same. Formally

Definition 6. A trading tree T = (V,Q,V ,Q) is degenerated if for all v, v′ ∈ V ,

|P (v0, v)| = |P (v0, v′)| ⇒ V(v) = V(v′).

A degenerated trading tree can be conveniently expressed as a sequence of subsets of trading
houses. For example5 S = (Ĥ1, Ĥ2, · · · , ĤK) indicates that the first subset of trading houses is

5To distinguish a degenerated tree from those are not, we label it by S rather than T .
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Ĥ1. After that, no matter what TTC(P, e, Ĥ1) is, the next subset of trading houses will be Ĥ2.
And so on.

We call a DTTC rule defined by a degenerated trading tree a sequential TTC (STTC) rule.
The Gale’s TTC rule is an STTC rule, which is defined by the sequence S = (H). In addition
the DTTC rule described in Example 4 is also an STTC rule, which is defined by the sequence
S = ({h1, h2}, H). However, the DTTC rule in Example 5 is not an STTC rule. Another
example of STTC rules is in Example 6.

Example 6. Bade (2017) recently proposed a strategy-proof mechanism for the house exchange
problem with single-peaked preferences, called “crawler.” This mechanism is implemented step
by step. In each step, we identify the first agent, from the one holding the smallest house to the
one holding the largest, whose favorite house is no larger than her currently holding house. If
her favorite is exactly the house she holds, let it be her final allocation. Otherwise, let the agent
be i and let her favorite house be hj . Then hj < hi, where hi denotes agent i’s currently holding
house. Let hj be agent i’s final allocation and let every agent, whose currently holding house is
larger than or equal to hj and smaller than hi, “crawl” to the house slightly larger. Exactly one
agent gets her final allocation in each step and hence the mechanism terminates with n steps.

The “crawler” appears very different from TTC. However, it is equivalent to an STTC de-
fined by the degenerated trading tree below

S = ({h1, h2}, {h2, h3}, {h1, h2}, {h3, h4}, {h2, h3}, {h1, h2}, · · · ) .

In particular, the first subset of trading houses is {h1, h2}. The next two are {h2, h3} and
{h1, h2}. The next three are {h3, h4}, {h2, h3}, {h1, h2}. And so on. The reader is encouraged
to apply this STTC rule to the Example 1 in Bade (2017) to see the equivalence.

4 Strategy-Proofness and Single-Peakedness

In this section we examine the implication of strategy-proofness on the choices of DTTC
rules. Such an implication depends clearly on the preference domain. If all preferences are
admissible, i.e., the universal domain is the admissible domain, then the class of DTTC rules
collapses to Gale’s TTC.

Proposition 2. A DTTC rule ϕT : PI →M is strategy-proof iff it is Gale’s TTC rule.

This is a direct implication of Proposition 1 and Ma (1994)’s characterization which proves
that a rule on the universal domain is strategy-proof, efficient, and individually rational if and
only if it is Gale’s TTC.

However, if the admissible preferences are single-peaked, we identify a sub-class of DTTC
rules to be strategy-proof. Single-peakedness for the house exchange problems may be defined
with respect to the size of houses or the market value of them. For the following analysis,
we assume that houses are ordered according to size. Such a linear order is denoted as < and
without loss of generality we fix it as h1 < h2 < · · · < hn throughout the analysis. As we
interpret this order as according to size, we will say h is smaller than h′ if h < h′. In addition
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we denote h 6 h′ if either h is smaller than h′ or they are identical. We assume that each agent’s
preference is single-peaked with respect to <. Formally,

Definition 7. A strict preference Pi on H is single-peaked with respect to < if

h′ < h 6 τ(Pi)⇒ h Pi h
′ and τ(Pi) 6 h < h′ ⇒ h Pi h

′.

Let SP< denote the collection of all single-peaked preferences. In the remaining of this
section, we study DTTC rules ϕT : SPI

< → M . The example below shows that such a rule is
generally manipulable. However, it at the same time suggests a restriction on the trading tree,
which is later shown sufficient to guarantee strategy-proofness.

Example 7. Let I = {1, 2, 3}, H = {h1, h2, h3}, and P be as below.

P =

(
P1 : h2 h3 h1

P2 : h1 h2 h3

P3 : h1 h2 h3

)

Let P ′1 : h2 h1 h3 and P ′ = (P ′1, P−1).
Consider an STTC rule defined by the degenerated tree S = ({h1, h3}, H). Then the dy-

namic TTC procedures for the two preference profiles are illustrated below.

Step 1: Step 2: Step 1: Step 2:

h1 h3

1 3

h1 h2 h3

3 2 1

h2 h3

2 1

h3

1

h1 h3

1 3

h3

3

h1 h2 h3

1 2 3

h3

3

At P , in the first step, agents 1 and 3 will exchange their houses. And in the second step,
agent 3 will point to herself while agent 2 points to her and agent 1 points to agent 2. Then the
unique cycle involves agent 3 herself. In the next round of TTC agent 2 points to herself and
finally agent 1 points to herself. So ϕS

1 (P ) = h3.
However, if agent 1 deviates to P ′1. In the first step, she will no longer exchange with agent

3 and stay with her own house. Then in the second step she can get h2, which is better than h3

at P .

The above example suggests that in any step, the subset of trading houses is a neighborhood.
We now formalize this notion.

Definition 8. A nonempty subset of houses Ĥ ⊂ 2H\∅ is a neighborhood if

10



∀ h, h′, h′′ such that h < h′′ < h′, h, h′ ∈ Ĥ ⇒ h′′ ∈ Ĥ .

Let H denote the collection of all neighborhoods. A trading tree T = (V,Q,V ,Q) is a
neighborhood tree if V(v) ∈ H for all v ∈ V . A DTTC rule is a dynamic TTC rule with
neighborhoods (DTTC-N rule) if it is defined by a neighborhood tree.

If a DTTC-N rule is also a sequential TTC rule, we denote it as STTC-N. Gale’s TTC rule,
the DTTC rules in Example 4 and 5, and the “crawler” of Bade (2017) are all STTC-N rules.
The following Venn diagram shows the relations among various classes of DTTC rules.

DTTC

STTC DTTC-N

STTC-N

TTCcrawler

Below is a main result, which states that any DTTC defined by a neighborhood tree is
strategy-proof on the single-peaked domain.

Theorem 1. A DTTC-N rule ϕT : SPI
< →M is strategy-proof.

The proof is in Appendix A.
We now address the question: If an STTC rule is strategy-proof on the single-peaked do-

main, does it need to be an STTC-N rule? The answer is yes, up to outcome-equivalence. In
particular, we prove that whenever an STTC rule is strategy-proof on the single-peaked domain,
it is equivalent to an STTC-N rule in the sense that they always select the same allocation for
all admissible economies.

In the construction of the STTC-N rule which is equivalent to the given STTC rule, we
define the closure of a subset of trading houses. To be precise, for an arbitrary nonempty subset
of houses Ĥ ⊂ 2H\∅, let cl(Ĥ) be the smallest neighborhood that contains it, i.e., cl(Ĥ) =

min⊂{H̃ ∈ H : Ĥ ⊂ H̃}. We call cl(Ĥ) the closure of Ĥ . For example, cl({h1, h3}) =

{h1, h2, h3}. In addition, the closure of a neighborhood is itself.
Fix an arbitrary degenerated trading tree S =

(
Ĥ1, Ĥ2, · · · , ĤK

)
, let

cl(S) ≡
(
cl(Ĥ1), cl(Ĥ2), · · · , cl(ĤK)

)
.

It is evident that for any degenerated trading tree S, cl(S) is a neighborhood tree.
The theorem below shows that whenever an STTC rule ϕS is strategy-proof on the single-

peaked domain, it selects an allocation that is the same as selected by the STTC-N rule ϕcl(S)

for every admissible economy.

11



Theorem 2. If an STTC rule ϕS : SPI
< → M is strategy-proof, then for all P ∈ SPI

<,
ϕS(P ) = ϕcl(S)(P ).

The proof is in Appendix B.
Finally, we address the question: How can we expand the single-peaked domain while re-

serving the strategy-proofness of an arbitrary DTTC-N rule? The answer is definitely in neg-
ative. We prove that whenever the single-peaked domain is expanded by adding even just one
non-single-peaked preference, there is an DTTC-N rule which is manipulable.

Theorem 3. Let P0 ∈ P\SP< be arbitrary. There is a degenerated tree of neighborhoods S
such that ϕS : {SP< ∪ {P0}} →M is manipulable.

The proof is in Appendix C.

5 Conclusion

This paper presents one of the first investigations on the designing problem of strategy-
proof exchange rules on the single-peaked domain. By identifying a large class of such rules,
we believe that the mechanism designer is now endowed with much freedom to cope with
context-specific requirements.

However, there are questions unsolved. Probably the most interesting is on the existence of
a rule witch is not a DTTC-N rule but still satisfies all three axioms. This is a difficult question
and deserves further study.

Appendix

A Proof of Theorem 1

Pick an arbitrary preference profile P ∈ SPI
< and let an arbitrary agent i be the unilateral

deviater. Without loss of generality, we assume that agent i’s favorite house is larger than her
endowment, i.e., τ(Pi) > hi. We track agent i’s holding houses in the procedure of DTTC

hi = h1 → h2 → · · · → hq → hq+1 → · · · → hQ−1 → hQ = ϕT
i (P ).

From the beginning, agent i’s holding house is hi, which is denoted h1. Then in the first step
when h1 is allowed to be traded, agent i changes her holding house from h1 to h2.6 We keep
track of the changes of her holding houses in all steps when her holding house is allowed to be
traded, until her final allocation ϕT

i (P ), which is denoted as hQ.
In order to prove strategy-proofness, we show a series of lemmas which depict the above

sequence and then the implication of her unilateral deviation to the sequence. The first two
lemmas study the question when will an agent stops exchanging houses.

6Notice that h1 might be the same as h2. Hence although she is allowed to trade, her holding house is not
changing.
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Lemma 1. In any step k, any round t of the TTC in that step, and any agent i ∈ Ct involved in
a cycle in that round such that agent i gets a house which is in between two other houses which
are available in that round, i.e., let TTCi(P,mk−1, Îk) = h and there are h′, h′′ ∈ H̃t such that
h′ < h < h′′. Agent i will not trade again in any future step, i.e., ϕT

i (P ) = h.

Proof. The picture below illustrates the situation studied by the lemma.

h′ h h′′

From single-peakedness and the fact that agent i points to h when h′ and h′′ are still avail-
able, for every hj s.t. hj Pi h, h′ < hj < h′′ and hj has been taken by some other agent, say j.
Then to show ϕT

i (P ) = h, it suffices to show every such agent j will not exchange again in any
future step. To do this, we pick an arbitrary such agent j, and apply the same logic we applied
to agent i. (Notice that when agent j takes hj , the houses h′ and h′′ are also available.) Then to
show that agent j will not trade again, it suffices to show that some agent k will not trade again.

Since the houses in between h′ and h′′ are finite, there must be a group of agents, each of
who gets a house in the first round in the TTC in step k. In addition, by domino effect, agent i
will not trade again in any future step if no one in this group will trade again, which is evident by
the fact that every house in between h′ and h′′ is available for trade and single-peakedness.

Lemma 2. Let in a certain step agent i changes her holding house from hq to hq+1 such that
hq < τ(Pi) 6 hq+1, then ϕT

i (P ) = hq+1.

Proof. If hq+1 = τ(Pi), the conclusion is evident. We prove the lemma for the case where
τ(Pi) < hq+1. By the fact that the trading houses form a neighborhood, every house that is
better than hq+1 is available for exchange in this step. Then agent i gets hq+1 from the TTC in
this step means, in the round when she gets hq+1, every house h that is better than hq+1 has been
taken by some other agent in some previous round. In other words, every such house h is taken
by someone in a round when hq and hq+1 are still available in this round and hq < h < hq+1.
Then Lemma 1 implies that the agent who took h will never exchange again. This is true for
every house that is better than hq+1 according to Pi. Hence agent i will not exchange in any
future step either, i.e., ϕT

i (P ) = hq+1.

The third lemma studies the sequence of agent i’s holding houses when her final allocation
is smaller than or equal to her peak. It says that throughout the procedure agent i never hold a
house larger than her final allocation. The situation is illustrated in Figure 1.

Lemma 3. If ϕT
i (P ) 6 τ(Pi), then h1 6 h2 6 · · · 6 hQ = ϕT

i (P ).

13



hi ϕT
i (P ) τ(Pi)

h1 h2 · · · hQ−1 hQ

Figure 1: The sequence of agent i’s holding houses when ϕT
i (P ) 6 τ(Pi).

Proof. By individual rationality of TTC and the fact that ϕT
i (P ) 6 τ(Pi), it suffices to show

h2, · · · , hQ−1 6 ϕT
i (P ). Suppose not, let q̄ = minq{hq : q = 2, · · · , Q−1 : hq > ϕT

i (P )}. It is
either ϕT

i (P ) < hq̄ < τ(Pi) or hq̄ > τ(Pi). The former case can not happen because whenever
agent holds hq̄, she will never exchange it for ϕT

i (P ). The latter implies ϕT
i (P ) = hq̄ according

to Lemma 2: contradiction.

The next lemma studies the sequence of agent i’s holding houses when her final allocation is
larger than her peak. It says that agent i changes her holding house from one smaller than τ(Pi)

to one larger than τ(Pi) in a certain step, and she will not exchange any more. The situation is
illustrated in Figure 2.

hi
h1 h2 · · · hQ̄−1

τ(Pi) ϕT
i (P )

hQ̄ = · · · = hQ

Figure 2: The sequence of agent i’s holding houses when ϕT
i (P ) > τ(Pi).

Lemma 4. If ϕT
i (P ) > τ(Pi), then there is unique Q̄ ∈ {2, · · · , Q} such that

h1 6 h2 6 · · · < hQ̄−1 < τ(Pi) < hQ̄ = · · · = hQ.

Proof. This lemma is directly implied by Lemma 2 and the fact that, whenever agent i changes
her holding house from hq to hq+1, hq+1 Pi h

q.

Given agent i’s sequence of holding houses, we investigate the changes due to her unilateral
deviation from Pi to an arbitrary P ′i ∈ SP<. We identify the first divergence between the
sequence of holding houses at P and the sequence at (P ′i , P−i). In particular, let it be such that
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agent i changes her holding house from hq to hq+1 at P and to h∗ at (P ′i , P−i). By assumption
h∗ 6= hq+1.

With following lemmas, we prove hq+1 Pi ϕ
T
i (P ′i , P−i), which impliesϕT

i (P ) Pi ϕ
T
i (P ′i , P−i).

In particular, Lemma 5 deals with the situation where hq < hq+1 6 τ(Pi), Lemma 6 deals with
the situation where hq = hq+1 6 τ(Pi), Lemma 7 deals with the situation where hq < τ(Pi) <

hq+1, and finally Lemma 8 deals with the situation where hq = hq+1 > τ(Pi).

Lemma 5. If hq < hq+1 6 τ(Pi), then hq+1 Pi ϕ
T
i (P ′i , P−i).

hq hq+1

Pi

P ′i

P ′i

P ′i

Proof. Case 1: τ(P ′i ) > hq+1. Let h and h denote respectively the smallest and largest houses
in the trading houses in this step. Then every house in between is allowed to be traded. We
discuss the following four sub-cases.

If h 6 min<{τ(Pi), τ(P ′i )}, then the induced preferences on the trading houses of Pi and
P ′i are the same, which implies h∗ = hq+1: contradiction.

If τ(Pi) < h 6 τ(P ′i ), by strategy-proofness and individual rationality of TTC, h∗ 6= hq+1

implies hq+1 Pi h
∗ and hence it is either that hq 6 h∗ < hq+1 or that τ(Pi) < h∗ and hq+1 Pi h

∗.
The former is impossible by the definition of TTC and the facts that (i) agent i will never point
to such an h∗ whenever hq+1 is available and (ii) that the induced preferences on [hq, hq+1] of
Pi and P ′i are the same. For the latter case, no matter what are the further exchanges for agent
i, by τ(Pi) < h∗ 6 h 6 τ(P ′i ) and our analysis in Lemma 3 and 4, τ(Pi) < h∗ 6 ϕT

i (P ′i , P−i)

and hence hq+1 Pi ϕ
T
i (P ′i , P−i).

If τ(P ′i ) < h 6 τ(Pi), by strategy-proofness and individual rationality of TTC, h∗ 6= hq+1

implies hq+1 Pi h
∗ and hence it is either that hq 6 h∗ < hq+1 or that τ(Pi) < h∗ and hq+1 Pi h

∗.
By the assumption that h 6 τ(Pi), the latter is impossible. In addition, the former case is ruled
out by the same argument in the above paragraph.

If h > max<{τ(Pi), τ(P ′i )}, an argument similar to the above proves what we want.
Case 2: hq < τ(P ′i ) < hq+1. Strategy-proofness and individual rationality of TTC imply

either hq 6 h∗ < hq+1 or h∗ > τ(Pi) and hq+1 Pi h
∗. In the latter case, h∗ > τ(P ′i ) and hence

Lemma 2 implies ϕT
i (P ′i , P−i) = h∗, which in turn implies hq+1 Pi ϕ

T
i (P ′i , P−i). So in the

remaining, hq 6 h∗ < hq+1. Notice that at P , agent i changes from hq to hq+1. Hence there is
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a cycle of agents who form a cycle with agent i in a certain step. In addition, at (P ′i , P−i), these
agent still do the same pointing as long as agent i hasn’t get a house. In particular, the agent who
owns hq+1 will not get a house before agent i at (P ′i , P−i). Consequently, if hq < h∗ < hq+1,
Lemma 1 implies ϕT

i (P ′i , P−i) and hence hq+1 Pi ϕ
T
i (P ′i , P−i). If otherwise, h∗ = hq. Every

house h such that h P ′i h
q has been taken by some other before agent i gets hq. Then Lemma 1

implies that those agents will not exchange again and hence ϕT
i (P ′i , P−i) = hq.

Case 3: τ(P ′i ) 6 hq. The conclusion is evidently true.

Lemma 6. If hq = hq+1 6 τ(Pi), then hq+1 Pi ϕ
T
i (P ′i , P−i).

Proof. If τ(P ′i ) 6 hq, the conclusion is trivial. We assume τ(P ′i ) > hq. By strategy-proofness
and individual rationality of TTC, h∗ 6= hq+1 implies that h∗ is on the other side of the peak,
i.e., h∗ > τ(Pi), and hq+1 Pi h

∗. In addition, Lemma 3 and 4 imply h∗ 6 ϕT
i (P ′i , P−i) and

hence hq+1 Pi ϕ
T
i (P ′i , P−i).

Lemma 7. If hq < τ(Pi) < hq+1, then hq+1 Pi ϕ
T
i (P ′i , P−i).

hQ̄−1 ϕT
i (P )

Pi

P ′i

P ′i

P ′i

Proof. Notice first q = Q̄− 1 and hq+1 = ϕT
i (P ).

Case 1: τ(P ′i ) > ϕT
i (P ). By strategy-proofness and individual rationality of TTC, h∗ 6=

ϕT
i (P ) implies either (i) h∗ < τ(Pi) and ϕT

i (P ) Pi h
∗ or (ii) ϕT

i (P ) < h∗. The former is
impossible because according to P ′i , agent i will not point to h∗ before ϕT

i (P ) is taken by
some others. In addition, since at P agent i gets ϕT

i (P ), there is a group of agents who form
a cycle with agent i. At (P ′i , P−i), there will still do the same pointing as long as agent i
hasn’t taken a house. As to the latter, Lemma 3 and 4 imply ϕT

i (P ′i , P−i) > h∗ and hence
ϕT
i (P ) Pi ϕ

T
i (P ′i , P−i).

Case 2: hQ−1 < τ(P ′i ) < ϕT
i (P ). For this case, the same logic as in the proof of Case 2,

Lemma 5 proves the conclusion.
Case 3: τ(P ′i ) 6 hQ−1. The conclusion is trivially true.

Lemma 8. If hq = hq+1 > τ(Pi), then hq+1 Pi ϕ
T
i (P ′i , P−i).
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Lemma 8 can be proved with arguments similar as in the proof of Lemma 6.
Now we are ready to claim the theorem. According to the above four lemmas, in the first

step when agent i is allowed to trade, if her holding house changes from h1 to h2 (which might
be the same as h1) at P but to some h∗ that is different with h2 at (P ′i , P−i), then her finally
house at (P ′i , P−i) will be worse than h2. Hence if P ′i is a profitable manipulation at P , h∗ = h2.

After that, we consider the next step when agent i is allowed to trade. Due to the tree struc-
ture where the next subset of trading houses depends only on the allocation from the previous
step, the second step when agent i is allowed to trade at (P ′i , P−i) is the same as at P . Then
the logic we apply to the first step when i is allowed to trade applies also to the second step.
Hence, after we consider all the steps when agent i is allowed to trade, we conclude that if P ′i
is a profitable manipulation at P , her trace of holding houses at (P ′i , P−i) is the same as at P ,
which is contradicting the assumption of profitable manipulation.

B Proof of Theorem 2

If S is a neighborhood tree, the result is trivial. Let, without loss of generality, Ĥk̄ 6∈ H be
the first non-neighborhood subset of trading houses along the sequence S. Let

S̄ =
(
Ĥ1, · · · , Ĥk̄−1, cl(Ĥk̄), Ĥk̄+1, · · · , ĤK

)
be a degenerated tree whose only difference from S is the replacement of Ĥk̄ by cl(Ĥk̄). Hence
to show the theorem, it suffice to show that ϕS : SPI

< → M being strategy-proof implies
ϕS(P ) = ϕS̄(P ) for all P ∈ SPI

<, which is equivalent to showing that the allocation after the
k̄-th step TTC of ϕS(P ) and ϕS̄(P ) are the same.

In addition, although Ĥk̄ is generally a union of more than two neighborhoods, we assume
that it consists of exactly two neighborhoods. We can do this because as long as we can show
the above statement for such an Ĥk̄, the result can be easily generalized to the general cases.
Formally, let Ĥ1, Ĥ2, Ĥ3 ∈ H be three neighborhoods such that h1 < h2 < h3 for arbitrary
h1 ∈ Ĥ1, h2 ∈ Ĥ2, and h3 ∈ Ĥ3. Let Ĥk̄ = Ĥ1 ∪ Ĥ3 6∈ H and Ĥ1 ∪ Ĥ2 ∪ Ĥ3 ∈ H. For
convenience, we denote h < Ĥ1 if h < h′ for all h′ ∈ Ĥ1.

The following two lemmas are implications of the strategy-proofness of ϕS : SPI
< →M .

Lemma 9. There are k, k′ < k̄ such that (i) Ĥ1 ∪ Ĥ2 ⊂ Ĥk and (ii) Ĥ2 ∪ Ĥ3 ⊂ Ĥk′ .

Proof. We show Ĥ1 ∪ Ĥ2 ⊂ Ĥk and the other can be shown symmetrically. Suppose not, i.e.,
@k < k̄ s.t. Ĥ1 ∪ Ĥ2 ⊂ Ĥk. Then let h1, h2, h3 ∈ H be houses such that h1 = min<H

1,
h2 = max<H

2, and h3 ∈ H3. So h1 is the smallest house in H1, h2 is the largest house in H2,
and h3 is arbitrary in H3. Let i1, i2, i3 be agents whose endowments are respectively h1, h2, h3,
i.e., e(i1) = h1, e(i2) = h2, and e(i3) = h3.

Consider a preference profile P ∈ SPI
< such that h2 Pi1 h

3 Pi1 h
1, h1 Pi2 h

2 Pi2 h
3,

h1 Pi3 h
2 Pi3 h

3, and for all i 6= i1, i2, i3, τ(Pi) = e(i). We apply ϕS to P . Every agent
other than i1, i2, i3 is endowed her favorite house and hence will never exchange with anybody.
In addition, the first exchange along the steps of the algorithm must be either between i1 and
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i2 or between i1 and i3. Hence there will be no exchange until a subset of trading houses
including either h1, h2 or h1, h3. So the first exchange will be i1 and i3 exchanging their houses
in the k̄-th step. After this, agent i3 gets her favorite house among h1, h2, h3 and hence will not
exchange again. Agents i1 and i2’s preferences between h2 and h3 are the same and hence will
not exchange either. So ϕS

i1(P ) = h3.
Consider that agent i1 reports another preference P ′i1 ∈ SP< such that h2 P ′i1 h

1 P ′i1 h
3.

We apply ϕS to (P ′i1 , P−i1). By such a deviation, agent i1 and i3 will no longer exchange their
houses in the k̄-th step. After this step, by the definition of a trading tree, there is k′′ > k̄ such
that Ĥ1 ∪ Ĥ2 ⊂ Ĥk′′ . Without loss of generality, let Ĥk′′ be the first such subset of trading
houses along S. Then agent i1 and i2 will exchange their houses in step k′′, and it is evident that
this is the last step when there is some exchange. Hence ϕS

i1(P
′
i1 , P−i1) = h2 Pi1 h

3 = ϕS
i1(P ):

manipulation!

For all h < h′ ∈ H , h′ is reachable from h in k steps if ∃ a subsequence (Ĥkm)Mm=1 ⊂
(Ĥ1, · · · , Ĥk) such that (i) h ∈ Ĥk1 , (ii) Ĥkm ∩ Ĥkm+1 6= ∅ ∀m = 1, · · · ,M − 1, and (iii)
h′ ∈ ĤkM . It is evident that h′ is reachable from h if and only if an agent i such that e(i) = h

gets h′ in k steps at the economy P ∈ SPI
< such that (i) τ(Pi) = h′, (ii) τ(Pj) = h1 for all

j ∈ I s.t. h < e(j) 6 h′, and (iii) τ(Pl) = e(l) for all the other agents. In addition, for any
h < h′ < h′′, if h′′ is reachable from h in k steps, by definition, h′ is also reachable from h in k
steps. We omit the symmetric definition of reachability from h to h′ in k steps where h′ < h.

Lemma 9 implies that an arbitrary h2 ∈ Ĥ2 is reachable from an arbitrary h1 ∈ Ĥ1 in k̄− 1

steps and an arbitrary h2 ∈ Ĥ2 is also reachable from an arbitrary h3 ∈ Ĥ3 in k̄ − 1 steps. In
addition to reachability from Ĥ1 and Ĥ3 to Ĥ2, we have also the following lemma.

Lemma 10. The following two statements are true.

1. For arbitrary h < Ĥ1, if ∃h1 ∈ Ĥ1 which is reachable from h in k̄ − 1 steps, then every
h2 ∈ Ĥ2 is also reachable from h in k̄ − 1 steps.

2. For arbitrary h > Ĥ3, if ∃h3 ∈ Ĥ3 which is reachable from h in k̄ − 1 steps, then every
h2 ∈ Ĥ2 is also reachable from h in k̄ − 1 steps.

Proof. We prove the first statement and the second can be proved symmetrically. Suppose the
first statement is not true, without loss of generality, let h1 be the largest among those in Ĥ1

and are reachable from h in k̄ − 1 steps, let h2 be the smallest among those in Ĥ2 and are
not reachable from h in k̄ − 1 steps, and let h3 ∈ Ĥ3 be arbitrary. Let in addition e(i) = h,
e(i1) = h1, e(i2) = h2, and e(i3) = h3.

Consider a preference profile P ∈ SPI
< where (i) h2 Pi h

3 Pi h
1 Pi h, (ii) τ(Pj) = h1 for

all j ∈ {l ∈ I : h < e(l) < h1}∪{i1, i2, i3}, and τ(Pl) = e(l) for all other agents. We apply ϕS

to P . Since h1 is reachable from h in k̄ − 1 steps and h2 is not reachable from h in k̄ − 1 steps,
agent i holds h1 after the (k̄ − 1)-th step of TTC. Then in the k̄-th step, agent i will exchange
h1 with i3 for h3. After that no exchange will happen and hence ϕS

i (P ) = h3.
However, if agent i misreports a preference P ′i such that h2 P ′i h

1 P ′i h
3 P ′i h. In the

procedure of applying ϕS to (P ′i , P−i), agent i still holds h1 after the (k̄ − 1)-th step but she
will not exchange h1 with agent i3 for h3 in the k̄-th any more. Also, by the definition of a
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trading tree, agent i will exchange with i2 in some later step and hence ϕS
i (P ′i , P−i) = h2 which

is strictly better than h3: manipulation!

We are now ready to claim that the replacement of Ĥk̄ = Ĥ1 ∪ Ĥ3 with cl(Ĥk̄) = Ĥ1 ∪
Ĥ2 ∪ Ĥ3 does not affect the allocation from the k̄-th step TTC. If no h < Ĥ1 and h1 ∈ Ĥ1

(no h > Ĥ3 and h3 ∈ Ĥ3) such that h1 is reachable from h (h3 is reachable from h) in k̄ − 1

steps, Lemma 9 implies what we want. If instead, there are h < Ĥ1 and h1 ∈ Ĥ1 such that h1

is reachable from h (symmetrically there are h > Ĥ3 and h3 ∈ Ĥ3 such that h3 is reachable
from h) in k̄− 1 steps, Lemma 10 implies that every h2 ∈ Ĥ2 is also reachable from h in k̄− 1

steps, which in turn implies what we want.

C Proof of Theorem3

Let P0 ∈ P\SP< be an arbitrary non-single-peaked preference. Let hk = τ(P0), then there
are hi, hj such that hi < hj < hk and hi P0 hj . (The symmetric case where hk < hj < hi can
be handled similarly.) Consider the STTC-N rule ϕS : {SP< ∪ {P0}}I →M defined by

S = (cl({hi, hj}), cl({hj, hk}), H) .

Let P ∈ {SP< ∪ {P0}}I be a profile of preferences such that Pi = Pj = P0, Pk ∈ SP<

such that hj Pk hk Pk h for all h 6= hj, hk, and for all l 6= i, j, k let Pl ∈ SP< such that
e(l) = hl. The figure below illustrates the preferences.

hi hj hk

Pk

∗
∗

∗ P ′i
Pi, Pj

It is evident that ϕS
i (P ) = hi. Let agent i misreport another preference P ′i ∈ SP< such that

τ(P ′i ) = hk. Then ϕS
i (P ′i , P−i) = hk which is better than hi under agent Pi.
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