
On the Decomposability of Fractional Allocations*

Shurojit Chatterji† Peng Liu‡

July 11, 2022

Abstract

A common practice in dealing with the allocation of indivisible objects is to treat them
as infinitely divisible and specify a fractional allocation, which is then implemented as a
lottery on integer allocations that are feasible. The question we study is whether an ar-
bitrary fractional allocation can be decomposed as a lottery on an arbitrary set of feasible
integer allocations. The main result is a characterization of decomposable fractional alloca-
tions, that is obtained by transforming the decomposability problem into a maximum flow
problem. We also provide a separate necessary condition for decomposability.

Keywords: Indivisibility; Fractional allocation; Decomposability; Maximum flow

JEL Classification: C78, D82

1 Introduction

This paper examines the allocation of indivisible objects in a set up where money transfers
are prohibited. An inevitable issue this literature has to confront is the lack of ex-post fairness.
To deal with this issue, a common practice adopted by economists is to specify a fractional
allocation, which treats objects as if they are infinitely divisible, and then implement it as a
lottery on feasible integer allocations. This method was introduced by Hylland and Zeckhauser
(1979) for the problem of assigning individuals to positions and it was subsequently adopted
in mechanism design problems such as scheduling, house allocation, school choice, and course
allocation (Crès and Moulin, 2001; Bogomolnaia and Moulin, 2001; Kesten and Ünver, 2015;
Budish, 2011).

A central question underlying this methodology is hence whether or not the specified frac-
tional allocation is decomposable, i.e., whether it can be expressed as a lottery on the set of
feasible integer allocations. The answer to this question apparently depends on the constraints
that identify the set of feasible integer allocations. The celebrated Birkhoff-von Neumann the-
orem (Birkhoff, 1946; Von Neumann, 1953) states, for the cases where the allocations are two-
dimensional square matrices, that if the feasibility constraints are such that each row and each

*We are grateful for valuable comments and suggestions from Wonki Jo Cho, Jingyi Xue, and Huaxia Zeng.
Peng Liu’s study was supported by the National Natural Science Foundation of China (No. 72003068).

†School of Economics, Singapore Management University, Singapore.
‡Faculty of Economics and Management, East China Normal University, Shanghai, China.

1

column sum to one, a fractional allocation is decomposable if and only if it satisfies the same
constraints. Recently, Budish et al. (2013) study two-dimensional allocations, where every fea-
sibility constraint requires that the sum of a particular subset of elements be within a preset
range. They show that if the constraints that identify the feasible integer allocations confirm to
a structure called “bihierarchy”, a fractional allocation is decomposable if and only if it satisfies
the same constraints.1 Moreover, they show that if the feasibility constraints violate the bihierar-
chy structure but satisfy a richness condition, a fractional allocation satisfying these constraints
may be indecomposable.

Our paper complements this literature and studies the decomposability issue of fractional
allocations. However, we do not seek to characterize constraints on feasible integer allocations
that precipitate the property that a fractional allocation is decomposable if and only if it satisfies
the same constraints. Rather, we postulate that a mechanism designer, faced with a particular
problem, has employed some mechanism that treats objects as infinitely divisible, and has spec-
ified a fractional allocation. The question we study is whether this fractional allocation can be
decomposed as a lottery on a given set of feasible integer allocations. It is worth noting that
we impose no restriction on the constraints that identify these feasible integer allocations, nor
do we focus on the fractional allocations that satisfy the same set of constraints. As long as the
feasibility of integer allocations is clearly defined, our results apply.

The main result is a characterization of decomposable fractional allocations, which we
obtain by transforming the original decomposability problem into a maximum flow problem,
which is more transparent and simpler than the original problem. In particular, given a fractional
allocation and the set of feasible integer allocations, we construct a maximum flow problem with
vertex capacities, which is standard, except for a class of additional equality constraints. We
then vary the lottery on the set of feasible integer allocations so as to maximize the maximum
flow. It is shown that the given fractional allocation is decomposable if and only if the maxi-
mized maximum flow is equal to the “grand sum” (i.e., the summation of all elements) of the
fractional allocation. Moreover, in addition to checking whether the given fractional alloca-
tion is decomposable or not, our method also yields a decomposition whenever the fractional
allocation is decomposable.2

Our characterization of decomposability complements the results by Birkhoff (1946), Von Neu-
mann (1953), and Budish et al. (2013), in the following three ways. First, we do not require the
allocations to be two-dimensional, nor do we require that the constraints identifying feasible
integer allocations take particular formats. Moreover, the constraints studied by the aforemen-
tioned papers are such that the summation of a subset of elements in the allocation is in a preset
range. (For detailed discussion, please refer to Section 1.2.) However, there could be situations
where the context-specific constraints cannot be modeled in this way. For example, consider
the problem of allocating three objects (a, b, and c) among three agents (1, 2, and 3). Suppose,

1The constraints in the Birkhoff-von Neumann theorem satisfy the bihierarchy structure. A more detailed
discussion can be found in the section on related literature.

2In the situations where the given fractional allocation is not decomposable, our method leads to a lottery that
might be chosen as an approximation to the given fractional allocation. For applications, we provide Matlab files,
which are available online and a manual is given in Appendix B. We also give a demonstration, in which we
randomly generate a fractional allocation and then approximate it by the aforementioned method.

2

https://pengliusmu.weebly.com

for a specific problem, it is required that agent 1 gets a whenever agent 2 gets b. Since we
impose no restriction on constraint formats, our results apply. It is also worth mentioning that
our results can be applied to verify the decomposability of plane-stochastic matrices, the higher
dimensional analogues of bi-stochastic matrices, while the aforementioned results do not apply.
Put otherwise, our results apply to a larger set of problems.

Second, in the model setting studied by the aforementioned papers, if the constraints satisfy
the bihierarchy structure, we know that every fractional allocation satisfying the same con-
straints is decomposable. However, the problem of finding a decomposition persists: Our
characterization gives a specific method (see the leading example). In view of the fact that
linear programming, in particular the maximum flow problem, has been intensively studied
for decades and several algorithms that solve such problems are available, we believe that our
method is practically useful.3

Third, in the model setting studied by the aforementioned papers, if the constraints violate
the bihierarchy structure, we know that not all fractional allocations satisfying these constraints
are decomposable. The question of how to ascertain whether or not a specific fractional allo-
cation is decomposable persists: Our characterization applies to answer this question (see the
leading example). Moreover, we also present in this paper is a separate necessary condition for
checking decomposability.

In the remainder of the introduction we present a leading example, followed by a review
of the literature. Section 2 introduces preliminary notations and definitions. Section 3 presents
main results and Section 4 contains final remarks. The appendix collects material which can be
omitted without harming the understanding of the main text.

1.1 A Leading Example

We consider the case where three indivisible objects (a, b, and c) are to be assigned among
three agents (1, 2, and 3). We depart from the Bogomolnaia and Moulin (2001) formulation by
allowing the agents to receive bundles of the goods. Thus there are in total 8 bundles, including
the empty bundle. Each agent has a strict preference on bundles of objects. Suppose that in
order to achieve ordinal efficiency, the probabilistic serial mechanism is adopted to specify the
fractional allocation.4 Consider the two preference profiles P and P ′ specified below and the
correspondingly specified fractional allocations M and M ′, where to save space, in both pref-

3The simplex algorithm is classical for solving linear programmings and the Ford-Fulkerson algorithm is clas-
sical for the maximum flow problems. More algorithms can be found in Ahuja et al. (1993).

4The probabilistic serial mechanism (PS) was introduced by Bogomolnaia and Moulin (2001) for the allocation
problem where each agent is supposed to get exactly one object. This mechanism satisfies a desirable property
called ordinal efficiency, which requires that, no matter what are agents’ cardinal utility representing their prefer-
ences, the specified fractional allocation is Pareto efficient under the assumption that agents are expected-utility
maximizers. In this case, the fractional allocations generated by the PS mechanism are bi-stochastic matrices. The
PS mechanism was generalized by Budish et al. (2013) to the setting where the fractional allocations are struc-
tured as “bihierarchy” (See more details in Section 1.2). More recently, Chatterji and Liu (2020) generalized the
PS mechanism for the setting where each agent receives a bundle (a combination of different types of objects),
and hence the fractional allocations are not bihierarchies. Aziz and Brandl (2020) proposed a unified model to
incorporate various settings where the PS mechanism applies.

3

erences and fractional allocations we depict only those bundles that are allocated with positive
probability in the fractional allocations. For instance, agent 1’s preference indicates that the
bundle containing a and b is the best. The second best is the singleton bundle containing only
a. In particular, the empty bundle ∅ is one containing no object.

The question is whether or not M and M ′ are decomposable.5

P =

 P1 : ab � a � b � c � ∅ � · · ·
P2 : b � a � ab � ∅ � c � · · ·
P3 : a � b � ab � ∅ � c � · · ·

 M =

ab a b c ∅ · · ·

M1 : 1/2 0 0 1/2 0 0

M2 : 0 0 1/2 1/4 1/4 0

M3 : 0 1/2 0 1/4 1/4 0

P ′ =

 P1 : ab � a � b � c � ∅ � · · ·
P ′2 : b � a � ab � c � ∅ � · · ·
P ′3 : a � b � ab � c � ∅ � · · ·

 M ′ =

ab a b c ∅ · · ·

M ′1 : 1/2 0 0 1/3 1/6 0

M ′2 : 0 0 1/2 1/3 1/6 0

M ′3 : 0 1/2 0 1/3 1/6 0

From the equality below, we see that M is decomposable. In particular, the feasibility con-

straints in this example are apparent: each agent gets one bundle and each object is allocated to
one agent. It is evident that the integer allocations below are all feasible. The assigned proba-
bilities can be identified easily by applying Theorem 1 (the details can be found in Example 6).

M =
1

4

 D1 ab c ∅
1 : 1 0 0
2 : 0 1 0
3 : 0 0 1

 +
1

4

 D2 ab c ∅
1 : 1 0 0
2 : 0 0 1
3 : 0 1 0

 +
1

2

 D3 a b c
1 : 0 0 1
2 : 0 1 0
3 : 1 0 0

It is worth noting that the structure of fractional allocations here is different from that of

the bi-stochastic matrices. In particular, for a bi-stochastic matrix, each row sums to one and
each column sums to one. Here, each object’s feasibility constraint requires several columns
sum to one. (For a formal description of the feasibility, please refer to Example 3.) This feature
tells that the Birkhoff-von Neumann theorem does not apply and so it is not easy to determine
whether or not M ′ is decomposable. Our main result, Theorem 1, applies and reveals that M ′

is not decomposable. (For details, please refer to Example 7.)

5We explain the probabilistic serial mechanism with P . Imagine that the objects are infinitely divisible and there
is a timer. At t = 0, all agents start to “eat” their respectively favorite bundle, at the unit speed. In particular, agent
1 eats simultaneously a and b, agent 2 eats only b, and agent 3 eats only a. Hence, both of a and b are exhausted
at time t = 1/2, after when agents start to eat their favorite bundle among the available ones. In particular, agent
1 eats c and the others choose to eat nothing (bundle ∅). Since all objects need to be assigned, agents 2 and 3
have to stop eating ∅ and start eating c at t = 3/4. Suppose otherwise, they eat ∅ until t = 5/6 > 3/4, then the
remaining share of c is 1 − (5/6 − 1/2), where the deducted share was eaten by agent 1. Then to eat up c, three
agents need time [1 − (5/6 − 1/2)]/3 = 2/9. However, if so, the total share of bundles eaten by each agent is
5/6 + 2/9 = 19/18 > 1. When shares are implemented as probabilities, this means that each agent has more
than one probability of getting one bundle, a contradiction to the requirement that each agent receives one bundle.
Hence, the second step ends at time t = 3/4 and in the third step all agents eat the remaining share of c. Finally,
the shares of bundle eaten by agents are interpreted as the probabilities agents get these bundles.

4

1.2 Related Literature

This paper is to our understanding closely related to two strands of literature. The first
is on the decomposability of matrices satisfying certain constraints. An important result in
this literature is the decomposability of all bi-stochastic matrices as convex combinations of
permutation matrices. This result is typically attributed to Birkhoff (1946) and Von Neumann
(1953) and called the Birkhoff-von Neumann theorem. The traditional proof is by the so-called
Birkhoff algorithm, which iteratively removes a fraction of a permutation matrix from the given
bi-stochastic matrix, where the resulting matrix has at least one more zero entry. Then since the
matrix is finite, the iteration terminates after finitely many steps.6

More recently, Budish et al. (2013) generalize the Birkhoff-von Neumann theorem to a
larger class of feasibility constraints. In particular, they study two dimensional real matrices
M of size |I| × |O|, where I denotes the set of agents and O the set of objects, with the
constraints in the form of q

S
6

∑
s∈SM(s) 6 qS , where S ⊂ I × O is a subset of indices

and q
S
, qS are fixed real numbers. These subsets of indices are collected and called a constraint

structure, denoted as S. The authors then introduce a condition on S called “bihierarchy”,
which requires that S can be partitioned into two subsets S1,S2 so that, for an arbitrary pair
S, S ′ from S1 (or both from S2), either they are disjoint (S ∩ S ′ = ∅) or one contains the
other (S ⊂ S ′ or S ′ ⊂ S). They show that whenever the constraint structure is a bihierarchy,
all fractional allocations are decomposable as lotteries on the integer allocations defined by
the same bihierarchy. Loosely speaking, bihierarchy requires that S can be partitioned into
one set of “row constraints” and one set of “column constraints.” A row(column) constraint
refers to a subset of rows(columns) or a subset of one row(column). It is evident that the set
of matrices attaining the bihierarchy structure includes the bi-stochastic matrices as a proper
subset. Unfortunately, such a decomposability result does not hold for the problems where the
feasibility constraints do not follow bihierarchies. In particular, high-dimensional analogues
of bi-stochastic matrices, called the plain-stochastic matrices, may be indecomposable. Put in
mathematical terms, the extremal points of these matrices include not only integer allocations
but also some fractional allocations. Mathematicians are hence interested in characterizing the
set of extremal points.7

The central difference between the current paper and the studies in this strand is that the
question the latter study is whether all fractional allocations satisfying a particular set of con-
straints are decomposable or not, given that the set of feasible integer allocations is identified by
the same set of constraints. Our question is whether an arbitrary fractional allocation is decom-
posable or not, given an arbitrary set of feasible integer allocations. In particular, we impose no

6The existence of such a permutation matrix is guaranteed by the Hall’s marriage theorem. Another construc-
tive proof of the Birkhoff-von Neumann theorem is by Hylland and Zeckhauser (1979). This proof iteratively
decomposes the given bi-stochastic matrix as a convex combination of two bi-stochastic matrices, both of which
have at least one more entry in {0, 1}. The idea of trading cycles is used in identifying the binary convex com-
bination. The iteration terminates in finitely many step when all the bi-stochastic matrices become permutation
matrices. There are quite a few different proofs of the Birkhoff-von Neumann theorem, including but not limited
to Dantzig (1951), Chvatal et al. (1983), Romanovsky (1994), Hoffman and Wielandt (2003), and Hurlbert (2008).

7Representing studies are Brualdi and Csima (1975b), Brualdi and Csima (1975a), Csima (1970), Jurkat and
Ryser (1968), Marchi and Tarazaga (1979).

5

structure on feasibility constraints, nor a relationship between the fractional allocation and set
of feasible integer allocations.

The second strand of literature related to our paper is on the approximation of fractional
allocations, given that the given fractional allocation is not decomposable. There are, to our
knowledge, two recent papers on this topic. Akbarpour and Nikzad (2020) suggest that if the
constraint structure S can be partitioned into two parts P andQ such that P is a bihierarchy and
Q satisfies a condition defined with respect to P , then there is a lottery on integer matrices such
that the constraints in P are met exactly and the constraints in Q are met arbitrarily closely.
This result is useful when some constraints are treated as “soft”. For example, the constraint
that a school has at least 50% of its students live within walk zone can be treated as soft, since,
if necessary, 48% is also acceptable. Nguyen et al. (2016) impose the restriction on a fractional
allocation that disallows an agent to receive a bundle containing more than k objects and show
that it can be expressed as a lottery on integer allocations which over-allocates each object by at
most k − 1 units. The approximation of indecomposable fractional allocations is not the focus
of our paper. However, our characterization of decomposability suggests an approximation
method, as remarked in Section 4.

2 Preliminaries

Let I denote an exogenously given finite set of indices. Such a set is usually a Cartesian
product, but we do not require it be one. A fractional allocation is a mapping M : I →
[0, 1] specifying at each index a real number in between zero and one. An integer allocation
is a special case of fractional allocations where either one or zero is specified at each index.
Formally, an integer allocation is a mappingD : I → {0, 1}. For specific allocation problems,
it may not be true that all integer allocations are feasible. We henceforth denote the set of
feasible (integer) allocations as D. We say a fractional allocation is decomposable through D
if it can be expressed as a convex combination of the integer allocations in D.8

Definition 1. A fractional allocation M : I → [0, 1] is decomposable through a given set of
feasible allocations D if there is a lottery β ∈ 4(D) such that M =

∑
D∈D β(D) ·D.

The grand sum of an allocation refers to the summation of all elements in it and is denoted
|M | ≡

∑
u∈IM(u). Note that for an integer allocation, its grand sum |D| is exactly the number

of ones in it. We assume that the feasible allocations have the same grand sum and denote
n ≡ |D| for all D ∈ D.9 It is evident that |M | = n is a necessary condition for a fractional
allocation M to be decomposable through D. We henceforth assume |M | = n.

The requirements that identify the feasible allocations are called feasibility constraints. For
different allocation problems, these constraints may take various forms. We list below some

8Note that the only relation between the fractional allocation to be implemented and the set of feasible integer
allocations is that their index set is the same, which is evidently a necessary condition for decomposability. In
particular, we do not require the fractional allocation to satisfy the feasibility requirement that identifies D.

9It is true that in some allocation problems, feasible allocations may specify different numbers of ones. How-
ever, by introducing “null” indices, it is easy to transform the given feasible allocations to ones where all of them
have the same grand sum. Please also refer to Footnote 13 for a specific example.

6

interesting examples.

Example 1. Bogomolnaia and Moulin (2001) consider the allocation of n objects among n
agents where each agent receives exactly one object. In this problem, the index set contains n2

elements, i.e., I = {1, · · · , n}2. The feasibility requirement that identifies the set of feasible
allocations contains two classes of constraints, called the row constraints and the column con-
straints. A row constraint is due to the requirement that each agent receives exactly one object
and a column constraint is due to the requirement that each object be assigned to exactly one
agent. Hence an integer allocation D : I → {0, 1} is feasible if and only if it satisfies the
following constraints.

Row constraints: ∀i = 1, · · · , n :
n∑
j=1

D(i, j) = 1

Column constraints: ∀j = 1, · · · , n :
n∑
i=1

D(i, j) = 1

The set of feasible allocations D identified is evidently the set of permutation matrices. It
is evident that a decomposable fractional allocation must also satisfy the above constraints.
The question is whether the converse is true. The celebrated Birkhoff-von Neumann theorem
gives an affirmative answer and states that a fractional allocation is decomposable through D
if and only if it is a bi-stochastic matrix, i.e., a fractional allocation satisfying the constraints
above. �

Example 2. Budish et al. (2013) consider a multi-sided allocation problem (whereas the pre-
vious model considered by Bogomolnaia and Moulin (2001) is a two-sided one). For example,
students may be assigned to different schools and after-school programs. Assume that there are
three sides where each side has n objects and so the index set in this setting is I = {1, · · · , n}3.
Analogous to the two-sided setting, an integer allocation in the current setting is feasible if and
only if it satisfies the following three classes of constraints.

∀i = 1, · · · , n :
n∑
j=1

n∑
k=1

D(i, j, k) = 1

∀j = 1, · · · , n :
n∑
i=1

n∑
k=1

D(i, j, k) = 1

∀k = 1, · · · , n :
n∑
i=1

n∑
j=1

D(i, j, k) = 1

Higher-dimensional analogues of bi-stochastic matrices are called the plane-stochastic ma-
trices, i.e., the matrices M : I → [0, 1] satisfying the constraints above. These matrices have
attracted the interest of mathematicians decades ago, see for example Csima (1970). It is ev-
ident that a decomposable fractional allocation must be a plane-stochastic matrix. It is also
well-known that the converse is not true, i.e., not every plane-stochastic matrix is decompos-
able via integer allocations satisfying the above constraints. However, the question of whether
or not a given plane-stochastic matrix is decomposable has been left uninvestigated. This ques-
tion can be answered by applying Theorem 1.

7

Example 3. (Leading example continued) Chatterji and Liu (2020) consider a two-sided allo-
cation problem where each agent may receive a bundle rather than exactly one object. Sup-
pose that three types of objects, a, b, and c, are to be allocated among three agents. For
simplicity, assume that we have only one item of each type. Then a bundle is one in the set
B ≡ {abc, ab, ac, bc, a, b, c, ∅}. Then the index set is I = {1, 2, 3}×B. An integer allocation is
feasible if and only if it satisfies the following constraints.

Each agent receives one bundle ∀i ∈ {1, 2, 3} :
∑
B∈B

D(i, B) = 1

Each object is assigned to one agent ∀x ∈ {a, b, c} :
3∑
i=1

∑
{B∈B:x∈B}

D(i, B) = 1

The above is a formal presentation of the model setting discussed in the leading example.
The feasibility requirement in this setting exhibits a combinatorial pattern, which is the key
feature that distinguishes it from the setting of Bogomolnaia and Moulin (2001). In particular,
each constraint here requires certain columns together, rather than a single column, sum to a
fixed number. For a better illustration, we visualize this point as follows.

1

2

3

abc ab ac bc a b c ∅

· · · · · · · ·

· · · · · · · ·

· · · · · · · · = 1

= 1

= 1

= 1 = 1 = 1

It is evident that a decomposable fractional allocation in this setting must satisfy the con-
straints listed above.10 The converse is not true, as already noticed by Chatterji and Liu (2020).
However, the question of whether or not a given fractional allocation satisfying the aforemen-
tioned constraints is decomposable or not has been left uninvestigated. 11 �

Example 4. All the feasibility constraints in the previous examples take the form of equalities.
However, constraints in some allocation problems may appear as inequalities, as is the case for
school choice problems.12 In particular, each school has a certain number of seats available,

10It is true for any linear constraint that, if all feasible integer allocations satisfy it, then a decomposable frac-
tional allocation must also satisfy it. A linear constraint can be written as an inequalityA·D 6 b, whereA : I → R
is a real matrix of the same size as the matrix D and b ∈ R is a real scaler. The dot product denotes the inner
product, i.e., the summation of the products of the paired elements in A and D at the same index. It is evident that
the constraints in Example 1 to 3 are all linear constraints. (An equality constraint is equivalent to the combination
of two inequality constraints.) Hence a necessary condition for a fractional allocation to be decomposable is that it
satisfies the linear constraints that identify the feasible allocations.

11A fractional allocation satisfying such a feasibility requirement can be written as a high-dimensional matrix
attaining a similar pattern as a plane-stochastic matrix, as shown in Appendix A.

12Another allocation problem where inequality constraints arise is course allocation, as the capacity of a course
is usually not a fixed quantity but a range between a upper bound and a lower bound of students. Please refer to
Budish and Cantillon (2012) for detailed discussions.

8

which can be disposed of with no cost. To be specific, suppose 6 students are to be assigned to
3 schools, denoted S1, S2, S3, where S1 can admit at most four students, S2 two, and S3 one.
The index set is then I = {1, · · · , 6} × {S1, S2, S3}. Hence, a feasible integer allocation must
satisfy the following constraints.13

Each student is
admitted to one school:

∀i = 1, · · · , 6 :
∑

S=S1,S2,S3

D(i, S) = 1

Each school admits
no more students
than its capacity:

6∑
i=1

D(i, S1) 6 4
6∑
i=1

D(i, S2) 6 2
6∑
i=1

D(i, S3) 6 1

In addition to these constraints, a feasible integer allocation is usually required to meet
certain policies. Consider for example that priorities are specified according to whether a
student lives in walkable zone and whether she has siblings already in a particular school.
Suppose the priorities are public and verifiable information and are as described below. In
particular, student 3 has the highest priority in S1 as she lives in the walkable zone of S1 and
has siblings in it. Students 1 and 2 have the second highest priority in S1 as they live in the
walkable zone, but don’t have siblings in this school. The remaining priorities can be read
similarly.

S1 S2 S3

Walk zone
and sibling 3 − −

Walk zone
but no sibling 1, 2 5 −

Sibling but
not walk zone 4, 5 − −

The policy alone can not judge whether an integer allocation is feasible or not. To do so,
we need information of students’ preferences, which are assumed as in the left panel below.

1 : S1 �1 S2 �1 S3

2 : S2 �2 S3 �2 S1

3 : S1 �3 S2 �3 S3

4 : S1 �4 S2 �4 S3

5 : S2 �5 S1 �5 S3

6 : S1 �6 S2 �6 S3

1

2

3

4

5

6

S1 S2 S3

1 0 0

1 0 0

1 0 0

0 1 0

= 1

= 1

= 1

= 1

= 1

= 1

6 4 6 2 6 1

In particular, since 3’s favorite is S1 and at this school she has the highest priority,D(3, S1) =

1 must be true for a feasible integer allocation. Similarly, we have D(1, S1) = D(4, S1) =

13In practice, students may have outside option, which tends to imply that the feasibility constraints for students
are also inequalities. However, by assuming the existence of a null school representing outside options, the equality
constraints here are without loss of generality.

9

D(5, S2) = 1. It is evident that an integer allocation is feasible if and only if it satisfies the
constraints aforementioned and specifies ones at these indices, as illustrated in the right panel
above. The literature has focused on the random deferred acceptance algorithm for this prob-
lem as it not only satisfies the constraints mentioned above but also delivers an ex post stable
matching (Kesten and Ünver, 2015). However, there remains the problem of deciding whether
an arbitrary fractional allocation in this set up is decomposable: Our method applies.

3 Results

This section presents our main results: a characterization of decomposable fractional allo-
cations and a separate necessary condition. Throughout this section, we fix an arbitrary index
set I and the set of feasible integer allocations D. We begin with a brief introduction to the
maximum flow problem and the classical results which we will invoke later.

3.1 A Preparation on the Maximum Flow Problem

A directed graph is a collection of two sets (V,E), where V is a finite set of vertices and
E ⊂ V ×V is the set of edges. An edge e ∈ E is usually denoted uv rather than (u, v). We call
e = uv an edge from u to v and denote its start e1 = u and end e2 = v.

A maximum flow problem is described as a tuple G = (V,E, s, t, c) where (i) (V,E) is a
directed graph, (ii) s, t ∈ V are vertices indicating the source and sink, and (iii) c : V \{s, t} →
R+ indicates the capacities of intermediate vertices. A flow is a vector x ∈ RE

+ which specifies a
volume on each edge. The maximum flow problem is a linear programming, formally presented
below.14

max
x∈RE

+

∑
e2=t

xe

s.t.
∑
e2=v

xe =
∑
e1=v

xe,∀v ∈ V \{s, t} (flow conservation)∑
e2=v

xe 6 c(v),∀v ∈ V \{s, t} (capacity constraints)

A feasible flow is one satisfying two sets of constraints. First, the sum of volumes entering
a vertex must be equal to the sum of volumes exiting that vertex, except for the source and sink.
Second, the sum of volumes entering (and hence exiting) a vertex other than the source and sink
must be no higher than the capacity of that vertex.

There are quite a few algorithms available for finding maximum flows, among which is
the celebrated Ford-Fulkerson method (Ford and Fulkerson, 1956). Another useful result is
the min-cut max-flow theorem. In particular, a subset of vertices U ⊂ V \{s, t} is called a
cut if there is no path from the source to sink in the residual graph, which results when the

14A standard maximum flow problem defines capacities on edges rather than vertices. However, it is easy to
transform the problem here to a standard one with edge capacities. In particular, we split each vertex v ∈ V \{s, t}
into two vertices vin and vout, add one edge vinvout with capacity c(v), and then convert every edge uv to an edge
uvin with capacity +∞ and every edge vu to an edge voutu with capacity +∞. Detailed discussion can be found
in Ahuja et al. (1993).

10

vertices in U and related edges are removed.15 The capacity of a cut is simply the summation
of capacities attached to these removed vertices. The min-cut max-flow theorem then states that
the maximum flow is equal to the minimum capacity among all cuts. Furthermore, for each
vertex in a minimum cut, the corresponding capacity constraint is binding.

3.2 Characterizing Decomposability

Let M : I → [0, 1] be an arbitrary fractional allocation and β ∈ 4(D) an arbitrary lottery.
We define a maximum flow problem, where the capacities depend on both M and β.

Let GM,β ≡ (V,E, s, t, cM,β) be as follows.

• V = I ∪ D ∪ {s, t};

• E = E1 ∪ E2 ∪ E3, where

– E1 = {su|u ∈ I} includes an edge from the source to each vertex in I,

– E2 = {uD|u ∈ I, D ∈ D and D(u) = 1} includes an edge from an index u ∈ I to
an integer allocation D ∈ D if and only if D specifies 1 at this index (so there are
exactly n edges leading to each D), and

– E3 = {Dt|D ∈ D} includes an edge from each vertex in D to the sink;

• cM,β : V \{s, t} → R+ is such that cM,β(u) = M(u) for all u ∈ I and cM,β(D) = n · βD
for all D ∈ D.16

Given the description of GM,β ≡ (V,E, s, t, cM,β), the corresponding maximum flow prob-
lem is given below, and its value is denoted ΓM,β .

ΓM,β ≡ max
x∈RE

+

∑
e2=t

xe

s.t.
∑
e2=v

xe =
∑
e1=v

xe,∀v ∈ V \{s, t} (flow conservation)∑
e2=v

xe 6 cM,β(v),∀v ∈ V \{s, t} (capacity constraints)

(1)

Example 5. (Leading example continued) Consider the allocation problem in Example 3. Given
the constraints described there, it is evident that there are in total 27 feasible allocations. Let
M be an arbitrary fractional allocation and β an arbitrary lottery on feasible allocations. We
specify a maximum flow problem GM,β = (V,E, s, t, cM,β), which is illustrated in Figure 1. For
simplicity, we draw only a part of the graph. We denote a feasible allocation by indicating the
indices at which an one is specified. The numbers above the vertices denote capacities. �

We now consider an alternative problem, which is the same as the maximum flow problem
(1) except that an additional set of equality constraints further shrinks the set of feasible flows.
These constraints require that the same flow volume be assigned to the edges that lead to the

15The residual graph consists of the vertex set V \U and the edge set {e ∈ E : e ∈ (V \U)× (V \U)}.
16Recall that n denotes the common grand sum of feasible allocations.

11

s t

1, ab

M(1, ab)

1, c

M(1, c)

2, b

M(2, b)

2, c

M(2, c)

2, ∅
M(2, ∅)

3, a

M(3, a)

3, c

M(3, c)

3, ∅
M(3, ∅)

1, abc

M(1, abc)

...

D1 : (1, ab); (2, c); (3, ∅)
3 · βD1

D2 : (1, ab); (2, ∅); (3, c)
3 · βD2

D3 : (1, c); (2, b); (3, a)

3 · βD3

D4 : (1, abc); (2, ∅); (3, ∅)
3 · βD4

...

Figure 1: A Maximum Flow Problem

same feasible allocation. It turns out that these constraints are related to the decomposability
of given fractional allocation. We hence call them decomposability constraints and denote the
value of this new problem ΨM,β .

ΨM,β ≡ max
x∈RE

+

∑
e2=t

xe

s.t.
∑
e2=v

xe =
∑
e1=v

xe,∀v ∈ V \{s, t} (flow conservation)∑
e2=v

xe 6 cM,β(v),∀v ∈ V \{s, t} (capacity constraints)

xe = xe′ ,∀e, e′ ∈ E2 s.t. e2 = e′2 (decomposability constraints)

(2)

The respective domains of the maximization problems in (1) and (2) are evidently both
closed and bounded. Then the fact that the common objective function is continuous implies
the existence of solutions to both problems so that ΓM,β and ΨM,β are well-defined and ΨM,β 6
ΓM,β . We require for our purpose that the value of problem (2) satisfy a particular property.
Specifically, the theorem below states that a fractional allocation is decomposable if and only
if there is a β such that the value of the above problem is exactly n, the common grand sum of
feasible allocations.

12

Theorem 1. A fractional allocation M is decomposable iff n = max
β∈4(D)

ΨM,β .

Proof. Sufficiency: To show the sufficiency, we state the following lemma, which characterizes
the flow that solves (2) when n = max

β∈4(D)
ΨM,β . This lemma is also useful when applying the

theorem.

Lemma 1. Let β∗ ∈ 4(D) be such that ΨM,β∗ = n. Let in addition, x∗ ∈ RE
+ be a flow that

delivers ΨM,β∗ . Then

1. ∀su ∈ E1, x∗su = M(u);

2. ∀uD ∈ E2, x∗uD = β∗D;

3. ∀Dt ∈ E3, x∗Dt = n · β∗D.

Proof of Lemma 1: We prove first that all capacity constraints in (2) hold with equalities.
It suffices to show that the capacity constraints in (1) hold with equalities. To see this, note
that V2 = D is a cut in GM,β∗ , whose capacity is n. Since (1) is a standard maximum flow
problem, the min-cut max-flow theorem applies and implies that ΓM,β∗ 6 n, which together
with ΓM,β∗ > ΨM,β∗ = n, give ΓM,β∗ = n. Hence, the min-cut max-flow theorem implies
that V2 is indeed a minimum cut. Then the capacity constraint for each vertex D ∈ D holds
with equality. Similarly, V1 is also a minimum cut and hence the capacity constraint for each
vertex u ∈ V1 also holds with equality. Given that all capacity constraints hold with equalities,
the flow conservation constraints imply 1, 3, and that ∀D ∈ V2,

∑
{e∈E2:e2=D} x

∗
e = n · β∗D.

Then, since there are exactly n edges leading to each D, the decomposability constraints imply
2, which completes the proof of the lemma.

Given Lemma 1, ∀u ∈ V1, we have the following equality, which completes the proof of
sufficiency.

M(u) =
∑

{e∈E2:e1=u}
x∗e by flow reservation

=
∑

{e∈E2:e1=u,e2=D,D(u)=1}
x∗e by construction of graph

=
∑

{D∈D:D(u)=1}
β∗D by Lemma 1

Necessity: Let β∗ ∈ 4(D) be a decomposition ofM , i.e.,M =
∑

D∈D β
∗
D ·D. We construct

a flow x∗, as follows.
∀ su ∈ E1, let x∗su = M(u);
∀ uD ∈ E2, let x∗uD = β∗D;
∀ Dt ∈ E3, let x∗Dt = n · .β∗D.
It can be verified that this flow satisfies all constraints in (2) and its value is exactly n. In

addition, V2 is a cut with capacity n, which means the value of (2) is at most n. Hence we have
n = max

β∈4(D)
ΨM,β . �

Remark 1. As the maximum flow problem is essentially a linear programming, one may also
prove the theorem directly, without invoking the max-flow min-cut theorem. We choose to estab-
lish the equivalence with this well-known result as it is convenient and serves as an application
to the problem of decomposability.

13

3.3 Discussion

We argue here that our transformation of the decomposability problem is an improvement
over the original linear programming that defines the problem. By definition, the decompos-
ability problem is to solve a system of |I| equations and |D| unknowns. Take for instance the
leading example 1.1. To judge whether M or M ′ is decomposable, one needs to solve a system
consisting of 24 equations, i.e. for each (i, B) ∈ {1, 2, 3} × B an equation below.

M(i, B)−
∑

D(i,B)=1

βD = 0

Theorem 1 transforms the original definition to a maximum flow problem, which in our view
is much more transparent. This transformation makes it possible to solve specific problems by
a simple investigation on the network structure. Example 6 and 7 illustrate this point. Further-
more, as Example 6 below shows, our method also directly yields a decomposition whenever
the fractional allocation is decomposable.

Example 6. (Leading example continued) Consider the allocation problem in Example 3 and
the maximum follow illustrated by Figure 1. From the equality in the leading example, we know
that M is decomposable. We now apply Theorem 1 and Lemma 1 so as to identify the lottery
presented there. Suppose β∗ is a decomposition ofM . By Lemma 1, the volumes assigned to the
edges s → (1, abc) and (1, abc) → D4 are respectively 0 and β∗D4 . Then the flow reservation
condition implies β∗D4 = 0. Similar argument applies and implies that β∗D = 0 for all integer
allocations except D1, D2, and D3. Hence the flow maximization problem can be simplified as
the one illustrated in Figure 2.

We can then verify the decomposability of M by solving the flow maximization problem. To
see this, note first that Lemma 1 implies that the volume assigned to edge (1, c) → D3 is β∗D3

and the volume assigned to s → (1, c) is 1/2. Hence the flow conservation of (1, c) implies
β∗D3 = 1/2. Similar arguments apply to the edges (2, c) → D1 and (3, c) → D2. Hence we
have β∗D1 = β∗D2 = 1/4. �

Example 7. (Leading example continued) We now apply Theorem 1 and Lemma 1 to show that
the fractional allocation M ′ in the leading example is indecomposable. Suppose not and β∗ is
a decomposition. First, by similar arguments in Example 6, β∗D = 0 for all integer allocation D
except D1, D2, and D3. We have hence the flow maximization problem illustrated in Figure 3.

By Theorem 1, to verify that M ′ is indecomposable, it suffices to check that the maximum
flow of the problem in Figure 3 is less than 3 for any β∗D1 , β∗D2 , and β∗D3 . To see this, note that
the collection of vertices (i, B)s is a cut, whose capacity is 25

6
. Hence the min-cut max-flow

theorem implies the indecomposability of M ′. �

Besides transparency, the second advantage of our transformation, relative to solving the
equation system as originally defined, is that it suggests a separate necessary condition for
decomposability. We present it in subsection 3.4.

The last advantage of our transformation is that, when a fractional allocation is found inde-
composable, a possibly good approximation of the decomposition is suggested by the maximum
flow. The original problem of solving the equation system gives no information other than the

14

s t

1, ab

1/2

1, c

1/2

2, b

1/2

2, c

1/4

2, ∅
1/4

3, a

1/2

3, c

1/4

3, ∅
1/4

D1 : (1, ab); (2, c); (3, ∅)

3 · β∗
D1

D2 : (1, ab); (2, ∅); (3, c)

3 · β∗
D2

D3 : (1, c); (2, b); (3, a)

3 · β∗
D3

Figure 2: Checking Decomposability of M

conclusion of indecomposability. More concretely, indecomposability implies that the maxi-
mum flow is less than the grand sum of the fractional allocation. This maximum flow could
nevertheless give an approximation of the decomposition. Since the approximation issue is be-
yond the scope of the current paper, we do not investigate in depth whether and in what sense
this approximation is good. In stead, we provide a short discussion on this as a final remark
(Section 4).

3.4 A Separate Necessary Condition

To induce the necessary condition, we reexamine the indecomposability of M ′. The reader
can refer to Figure 3 in Example 7. Suppose β∗ is a decomposition of M ′, we derive a con-
tradiction below. First, the capacity of (3, ∅) requires that the volume assigned to the edge
(3, ∅) → D1 is at most M ′(3, ∅) = 1/6. Lemma 1 them implies that β∗D1 6 1/6. Similar
argument implies β∗D2 6 M ′(2, ∅) = 1/6. Then the decomposability constraints of D1 and D2

imply respectively that the volumes assigned to edges (1, ab)→ D1 and (1, ab)→ D2 are both
smaller than or equal to 1/6. Next, note that (1, ab) is connected to only D1 and D2. However
the capacity of (1, ab) is 1/2, higher than 1/6 + 1/6 = 1/3. One can then see that the flow
specified in Lemma 1 does not fully utilize the capacity of (1, ab) and hence has a value smaller
than 3. Theorem 1 then implies the indecomposability of M ′.

From the arguments above, one may conclude that M ′ is indecomposable because of the ex-
istence of an element in M ′, which is, loosely speaking, “too large”. In particular, M ′(1, ab) =

1/2 is too large to be implemented through feasible integer allocations, given the other elements,

15

s t

1, ab

1/2

1, c

1/3

2, b

1/2

2, c

1/3

2, ∅
1/6

3, a

1/2

3, c

1/3

3, ∅
1/6

D1 : (1, ab); (2, c); (3, ∅)

3 · β∗
D1

D2 : (1, ab); (2, ∅); (3, c)

3 · β∗
D2

D3 : (1, c); (2, b); (3, a)

3 · β∗
D3

Figure 3: Checking Decomposability of M ′

in particular M ′(2, ∅) = M ′(3, ∅) = 1/6. Hence a necessary condition for decomposability is
the non-existence of such “too large” elements, which is formally presented below.

Proposition 1. If M is decomposable through D, then, ∀u ∈ I

M(u) 6
∑

{D∈D:D(u)=1}

min{M(v) : D(v) = 1}.

Proof. Let M =
∑
D∈D

βD ·D. Fix an arbitrary index u ∈ I, we have M(u) =
∑

{D∈D:D(u)=1}
βD.

Hence, it suffice to show βD 6 min{M(v) : D(v) = 1} for all D such that D(u) = 1. Suppose
not, and let βD > M(v) for some v ∈ I and D such that D(u) = 1. Then we have

βD > M(v) =
∑

{D′∈D:D′(v)=1}

βD′ > βD,

where the last inequality comes from D ∈ {D ∈ D : D(u) = 1} ∩ {D′ ∈ D : D′(v) = 1}. �

This necessary condition could be used as a first step in checking for decomposability. For
specific examples, it might be easier to identify some “too large” elements, as compared to
constructing a maximum flow problem and then solving it. The example below proves the
indecomposability of M ′ by applying the proposition. However, it should be noted that the
condition in the above proposition is only a necessary condition for decomposability.

16

Example 8. (Leading example continued) The following inequality indicates the indecompos-
ability of M ′ in the leading example.

M ′(1, ab) = 1/2 >
∑

{D∈D:D(1,ab)=1}
min{M ′(v) : D(v) = 1}

= min{M ′(v) : D1(v) = 1}+ min{M ′(v) : D2(v) = 1}

= min{M ′(1, ab),M ′(2, c),M ′(3, ∅)}+ min{M ′(1, ab),M ′(2, ∅),M ′(3, c)}

= min{1/2, 1/3, 1/6}+ min{1/2, 1/3, 1/6} = 1/6 + 1/6 = 1/3.

�

4 Final Remarks

Our main result, i.e., Theorem 1, states that a given fractional allocation is decomposable
through feasible allocations if and only if we can find a lottery β∗ such that ΨM,β∗ = n. We
reiterate that (i) our theorem holds independently of the feasibility constraints, which means
our result applies as long as the set of feasible allocations is clearly defined, and (ii) since linear
programming, and in particular the maximum flow problem, have been intensively studied for
decades, there are quite a few algorithms available for solving maximum flow problems, and
this makes our results practically useful.

Finally, our method proposes an approximation when the given fractional allocation proves
indecomposable. In such a situation, the message from Theorem 1 is that maxβ∈∆(D) ΨM,β < n.
The structure here however suggests that the β∗ that solves the maximization problem might
nonetheless give a good approximation ofM , i.e., M∗ ≡

∑
D∈D β

∗
D ·D can serve as an approxi-

mate decomposition ofM . We provide Matlab files for application and a manual in Appendix B.
The natural question here is how well M∗ approximates the originally given fractional alloca-
tion M . We next turn to this issue. Let the solution to problem (2) be β∗, the maximum flow be
x∗, and its value be n−εwhere ε > 0. For an arbitrary index u ∈ I, we are interested in the size
of |M∗(u) −M(u)|. By the structure of the graph we constructed, M∗(u) =

∑
e:e1=u,e2∈D x

∗
e,

whose value can not exceed the capacity of vertex u, i.e., M(u). Put otherwise, what we need to
know is the value of M(u)−

∑
e:e1=u,e2∈D x

∗
e, which measures the part of the capacity of u that

is not utilized by x∗. This value depends apparently on β∗, which is endogenously determined
and dependent on the structure of the graph, in particular, on the structure of edges in E2. Note
further that the edges in E2 are basically dictated by the feasibility constraints that identifies the
set of integer allocations. Hence, to investigate the precision of the approximation, a direction
for study could focus on specific feasibility constraints that allow an explicit characterization of
β. This line of enquiry is beyond the scope of the current paper, and we leave it for future work.

17

Appendix

A An equivalent modeling of the feasibility constraints in Ex-
ample 3

For simplifying the exposition, we assume that two objects are to be allocated among three
agents. Let I = {1, 2, 3} × {a, /a} × {b, /b}. Consider the following constraints

∀i = 1, 2, 3 :
∑

j∈{a,/a}

∑
k∈{b,/b}

D(i, j, k) = 1

∀j = a, /a :
3∑
i=1

∑
k∈{b,/b}

D(i, j, k) = 1

∀k = b, /b :
3∑
i=1

∑
j∈{b,/b}

D(i, j, k) = 1

It is evident that the above constraints attain the same pattern as the ones in Example 2 for
the plane-stochastic matrices. Note that the two-dimensional fractional allocation below is one
that fits into the setting in Example 3. The three-dimensional matrix below is one that fits into
the current setting. It is evident that these two presentations are equivalent. For example, the
element at index (1, ab) in the left panel corresponds to the element at (1, a, b) in the right panel
and (2, b) corresponds to (2, /a, b).

1

2

3

ab a b ∅

1/12 5/12 0 1/2

1/12 1/6 1/3 5/12

1/4 0 1/4 1/2

= 1 = 1

= 1

= 1

= 1

3

2

1

a /a
b
/b

1/12

1/3

B A manual of Matlab Files

The Matlab files we provide include the following:

1. Approx.m, which takes as inputs a fractional allocation M and the set of feasible integer
allocations D, and returns the approximation of M , denoted M∗, and the approximation
error, measured as the average absolute value of the distance between the pairs of elements
at the same index in M and M∗.17

17Another input of this function is “method”, which can be either ‘fmincon’ or ‘ga’. If ‘fmincon’ is given, local
optimization in finding β∗ will be performed and the initial point for searching local optima will be randomly
generated. If ‘ga’ is given, global optimization will be performed by employing the generic algorithm, which will
take longer time to find the solution.

18

2. objectivefun.m, which calculates the value of the problem in (2), taking as inputs the
given fractional allocation, the set of feasible integer allocations, and a lottery on these
integer allocations. This file is called by Approx.m.

3. creategraph.m, which constructs the graph illustrated in Figure 1, taking as inputs the
given fractional allocation and the set of feasible integer allocations. This file is called by
objectivefun.m.

4. plane-sto.m, which randomly generates a plane-stochastic matrix, given as inputs the
number of dimensions and the number of indices in each dimension.18

5. plane-det.m, which identifies the set of all integer plane-stochastic matrices, taking as
inputs the number of dimensions and the number of indices in each dimension.

Demo.m gives a demonstration where we randomly generate a plane-stochastic matrix M
of size 3 × 3 × 3 and then use Approx.m to identify an approximation of M , denoted M∗. In
our simulations, it turns out that the approximation error is about 0.0002, which means that,
averagely speaking, the difference between an element in M∗ and the corresponding element in
M at the same index is 0.0002.

References

AHUJA, R. K., T. L. MAGNANTI, AND J. B. ORLIN (1993): Network flows: theory, algo-
rithms, and applications, Prentice-Hall, Inc.

AKBARPOUR, M. AND A. NIKZAD (2020): “Approximate Random Allocation Mechanisms,”
The Review of Economic Studies, 87, 2473–2510.

AZIZ, H. AND F. BRANDL (2020): “The Vigilant Eating Rule: A General Approach for Prob-
abilistic Economic Design with Constraints,” arXiv preprint arXiv:2008.08991.

BAPAT, R. (1982): “D1AD2 theorems for multidimensional matrices,” Linear Algebra and its
Applications, 48, 437–442.

BIRKHOFF, G. (1946): “Three observations on linear algebra,” Univ. Nac. Tacuman, Rev. Ser.
A, 5, 147–151.

BOGOMOLNAIA, A. AND H. MOULIN (2001): “A new solution to the random assignment
problem,” Journal of Economic Theory, 100, 295–328.

BRUALDI, R. AND J. CSIMA (1975a): “Extremal plane stochastic matrices of dimension three,”
Linear Algebra and its Applications, 11, 105–133.

18We employ the “iterative scaling” method, which was first proposed by Sinkhorn (1964) for randomly gener-
ating bi-stochastic matrices and then extended to generating plane-stochastic matrices by Bapat (1982), Raghavan
(1984), and Franklin and Lorenz (1989) among others.

19

BRUALDI, R. A. AND J. CSIMA (1975b): “Stochastic patterns,” Journal of Combinatorial
Theory, Series A, 19, 1–12.

BUDISH, E. (2011): “The combinatorial assignment problem: Approximate competitive equi-
librium from equal incomes,” Journal of Political Economy, 119, 1061–1103.

BUDISH, E. AND E. CANTILLON (2012): “The multi-unit assignment problem: Theory and
evidence from course allocation at Harvard,” American Economic Review, 102, 2237–71.

BUDISH, E., Y.-K. CHE, F. KOJIMA, AND P. MILGROM (2013): “Designing random alloca-
tion mechanisms: Theory and applications,” American economic review, 103, 585–623.

CHATTERJI, S. AND P. LIU (2020): “Random assignments of bundles,” Journal of Mathemati-
cal Economics, 87, 15–30.

CHVATAL, V., V. CHVATAL, ET AL. (1983): Linear programming, Macmillan.

CRÈS, H. AND H. MOULIN (2001): “Scheduling with opting out: Improving upon random
priority,” Operations Research, 49, 565–577.

CSIMA, J. (1970): “Multidimensional stochastic matrices and patterns,” Journal of Algebra,
14, 194–202.

DANTZIG, G. B. (1951): “Application of the simplex method to a transportation problem,”
Activity analysis and production and allocation.

FORD, L. R. AND D. R. FULKERSON (1956): “Maximal flow through a network,” Canadian
journal of Mathematics, 8, 399–404.

FRANKLIN, J. AND J. LORENZ (1989): “On the scaling of multidimensional matrices,” Linear
Algebra and its applications, 114, 717–735.

HOFFMAN, A. J. AND H. W. WIELANDT (2003): “The variation of the spectrum of a normal
matrix,” in Selected Papers Of Alan J Hoffman: With Commentary, World Scientific, 118–
120.

HURLBERT, G. (2008): “A short proof of the birkhoff-von neumann theorem,” preprint (un-
published).

HYLLAND, A. AND R. ZECKHAUSER (1979): “The efficient allocation of individuals to posi-
tions,” Journal of Political economy, 87, 293–314.

JURKAT, W. AND H. RYSER (1968): “Extremal configurations and decomposition theorems.
I,” Journal of Algebra, 8, 194–222.

KESTEN, O. AND M. U. ÜNVER (2015): “A theory of school-choice lotteries,” Theoretical
Economics, 10, 543–595.

20

MARCHI, E. AND P. TARAZAGA (1979): “About (k, n) stochastic matrices,” Linear Algebra
and its Applications, 26, 15–30.

NGUYEN, T., A. PEIVANDI, AND R. VOHRA (2016): “Assignment problems with complemen-
tarities,” Journal of Economic Theory, 165, 209–241.

RAGHAVAN, T. (1984): “On pairs of multidimensional matrices,” Linear Algebra and its Ap-
plications, 62, 263–268.

ROMANOVSKY, J. V. (1994): “A simple proof of the Birkhoff-von Neumann theorem on bis-
tochastic matrices,” A tribute to Ilya Bakelman, 51–53.

SINKHORN, R. (1964): “A relationship between arbitrary positive matrices and doubly stochas-
tic matrices,” The annals of mathematical statistics, 35, 876–879.

VON NEUMANN, J. (1953): “A certain zero-sum two-person game equivalent to the optimal
assignment problem,” Contributions to the Theory of Games, 2, 5–12.

21

	Introduction
	A Leading Example
	Related Literature

	Preliminaries
	Results
	A Preparation on the Maximum Flow Problem
	Characterizing Decomposability
	Discussion
	A Separate Necessary Condition

	Final Remarks
	An equivalent modeling of the feasibility constraints in Example 3
	A manual of Matlab Files

