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Abstract

We address a standard random assignment problem (Bogomolnaia and Moulin, 2001). A
weakly connected domain admitting an sd-strategy-proof, sd-efficient and equal-treatment-of-
equals rule is characterized to be a restricted tier domain. Conversely, on such a domain, the
probabilistic serial rule is uniquely characterized by either sd-strategy-proofness, sd-efficiency
and equal treatment of equals, or sd-efficiency and sd-envy-freeness. Moreover, we provide
an algorithm to construct unions of multiple restricted tier domains, each of which admits an
sd-strategy-proof, sd-efficient and sd-envy-free rule.
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1 Introduction

We consider the problem of allocating several indivisible objects to a group of agents, each
of whom receives at most one object.1 Each agent reports a strict ordinal preference on objects
to the planner, and then the planner assigns a lottery over objects to each agent. The profile of
lotteries agents receive is called a random assignment. To extend a preference on objects to an as-
sessment on lotteries, the stochastic dominance extension introduced by Gibbard (1977) is widely
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adopted: A lottery is viewed at least as good as another one if the former (first-order) stochasti-
cally dominates the latter according to the ordinal preference over objects.2 Equivalently, under
the von-Neumann-Morgenstern hypothesis, a lottery stochastically dominates another one if and
only if it delivers an expected utility weakly higher than that delivered by the opponent for every
cardinal utility representing the ordinal preference.

With the stochastic dominance extension, several axioms are defined for designing random as-
signment rules which associate each profile of reported preferences to a random assignment. First,
sd-efficiency requires that no reassignment can be arranged such that all agents are at least as well as
before, and someone receives a strictly better lottery. Second, random assignment rules should pro-
vide incentives for agents to truthfully reveal their preferences. Accordingly, sd-strategy-proofness
is introduced, saying that for each agent, the lottery delivered by truth-telling stochastically dom-
inates the lottery induced by any preference misrepresentation, regardless of others’ preferences.
In addition, ex ante fairness in the sense of either equal treatment of equals or sd-envy-freeness is
imposed. As suggested by the names, equal treatment of equals requires that agents reporting the
same preferences receive the same lottery, while sd-envy-freeness is stronger, and requires that an
agent always weakly prefers her own lottery to others’.

Two classic random assignment rules have been widely studied in the literature: the random
serial dictatorship rule (Abdulkadiroğlu and Sönmez, 1998) and the probabilistic serial rule (Crès
and Moulin, 2001; Bogomolnaia and Moulin, 2001). On the one hand, the random serial dicta-
torship rule is sd-strategy-proof and equal-treatment-of-equals, but not sd-efficient (see Abdulka-
diroğlu and Sönmez, 2003; Kesten, 2009). On the other hand, the probabilistic serial rule is sd-
efficient and sd-envy-free, but fails sd-strategy-proofness. Moreover, an impossibility result has
been established by Bogomolnaia and Moulin (2001): When the numbers of objects and agents are
identical and at least four, and agents’ preferences are from the universal domain with no restric-
tion, no random assignment rule satisfies sd-strategy-proofness, sd-efficiency and equal treatment
of equals. Recently, this impossibility has also been established on some restricted preference
domains, e.g., single-peaked domains and single-dipped domains (see Kasajima, 2013; Altuntaş,
2016; Chang and Chun, 2017).

These impossibilities raise a natural question: Is there a reasonable restricted preference do-
main which admits an sd-strategy-proof, sd-efficient and equal-treatment-of-equals random as-
signment rule? Furthermore, if the answer is in the affirmative, what are the admissible random
assignment rules? This paper provides answers to these two questions.

We execute our investigation in a class of rich domains, weakly connected domains, which oc-
cupies a prominent position in the literature (see Remark 1). Two preferences are called neighbors
if across these two preferences, several pair(s) of contiguously ranked objects are locally switched,
and all other objects are identically ranked. A domain is then said weakly connected if any two
distinct preferences are connected via a sequence of preferences in the domain which are consec-
utively neighbored. This implies that the difference of any two preferences in a weakly connected
domain can be reconciled via a sequence of local switchings. Our first main result (Theorem 1)
shows that a weakly connected domain admitting an sd-strategy-proof, sd-efficient, and equal-
treatment-of-equals rule must be a restricted tier domain. To construct a restricted tier domain,
objects are first partitioned into several blocks, each of which contains one or two objects. Then,
all preferences are required to respect a common ranking of blocks, referred to as a restricted tier

2Other preference extensions are also investigated (e.g., Aziz et al., 2014; Bogomolnaia, 2015; Cho, 2018).
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structure. As an example, consider a skyscraper with two apartments on each floor. A restricted
tier structure can be elicited according to floors from the top down to the bottom: All agents pre-
fer higher apartments to lower ones. Between two apartments on the same floor, the preferences
are arbitrary across agents. The second main result (Theorem 2) searches for the desirable rules
on a restricted tier domain, and characterizes the probabilistic serial rule by either sd-strategy-
proofness, sd-efficiency and equal treatment of equals, or sd-efficiency and sd-envy-freeness.

Logically, our domain characterization result identifies, within the class of weakly connected
domains, the exact boundary between the ones admitting desirable rules and the ones not. Nor-
matively, we treat it as a negative result since a restricted tier domain is so restrictive that agents
are almost required to have the same preference. However, we believe that our domain charac-
terization result is critically different from and more informative than all existing impossibility
results alluded above. First, it implies every existing impossibility result. One can see this by sim-
ply verifying weak connectedness and the failure of the restricted tier structure. Second, our do-
main characterization result implies the nonexistence of sd-strategy-proof, sd-efficient and equal-
treatment-of-equals rules on some important domains that have not been studied by the literature
of random assignment (see Remark 1). Third, our domain characterization is potentially useful in
distinguishing possibility and impossibility when one in the future studies a specific interesting as-
signment problem, and encounters with a particular restricted preference domain. Last, it suggests
that to find a reasonable restricted domain which admits a desirable rule, we have to go beyond the
weakly connected domains. More specifically, given an arbitrary domain (not necessarily weakly
connected), we partition it into multiple weakly connected subdomains which are mutually dis-
connected.3 Then, the existence of an sd-strategy-proof, sd-efficient and equal-treatment-of-equals
rule implies that each subdomain must be a restricted tier domain. In other words, any domain
admitting an sd-strategy-proof, sd-efficient and equal-treatment-of-equals rule must be a union of
restricted tier domains. Following this direction, we provide an algorithm which gradually ex-
cludes preferences from the universal domain, and eventually generates a union of restricted tier
domains which is not weakly connected. More importantly, we show that every domain generated
by the algorithm is equivalent to a sequentially dichotomous domain of Liu (2019), and hence
admits an sd-strategy-proof, sd-efficient and sd-envy-free rule (see Proposition 1).

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3
presents the two main results. Section 4 studies the union of restricted tier domains, while Section
5 concludes. The Appendix gathers the omitted proofs.

2 Model

Let A ≡ {a, b, c, d, . . . } be a finite set of objects and I ≡ {1, 2, . . . , n} be a finite set of agents.
We assume |A| = |I| = n > 4. Each agent i is equipped with a (strict) preference Pi over A
which is complete, transitive and antisymmetric, i.e., a linear order. Given a, b ∈ A, a Pi b is
interpreted as “a is strictly preferred to b according to Pi”, and a Pi! b denotes that “a is strictly

3Starting from an arbitrary preference in the given domain, we repeatedly include in a subdomain preferences
which are neighbors to any preference already included. When no more preference can be included, we identify a
weakly connected subdomain. The same inclusion process can be repeatedly applied to the remaining preferences,
if any, to identify all weakly connected subdomains. In this manner, we partition the given domain into multiple
subdomains such that every subdomain is weakly connected, and no one preference in any subdomain is a neighbor to
any preference in another subdomain.
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preferred to b according to Pi, and a and b are contiguously ranked in Pi”, i.e., a Pi b, and there
exists no c ∈ A such that a Pi c and c Pi b. Let rk(Pi), k = 1, . . . , n, denote the k-th ranked object
in preference Pi. Let B(Pi, a) = {x ∈ A : x Pi a} denote the (strict) upper contour set of a at
Pi. Let P denote the set of all preferences. The set of admissible preferences is D ⊆ P, referred
to as a preference domain. In particular, P is called the universal domain, and a proper subset of
P is called a restricted domain. We assume that all agents have the same preference domain D. A
preference profile P ≡ (P1, . . . , Pn) ≡ (Pi, P−i) ∈ Dn is an n-tuple of admissible preferences.

Let ∆(A) denote the set of lotteries over A. Given λ ∈ ∆(A), λa denotes the probability al-
lotted to the object a. A (random) assignment is a bi-stochastic matrix L ≡ [Lia]i∈I,a∈A, namely
a non-negative square matrix whose elements in each row and each column sum to unity respec-
tively, i.e., (i) Lia > 0 for all i ∈ I and a ∈ A, (ii)

∑
a∈A Lia = 1 for all i ∈ I , and (iii)∑

i∈I Lia = 1 for all a ∈ A. An element Lia is interpreted as the probability of agent i receiving
object a. Then, the i-th row of L, denoted Li, specifies agent i’s lottery overA. LetL denote the set
of all bi-stochastic matrices. The Birkhoff-von-Neumann theorem states that every bi-stochastic
matrix can be decomposed as a lottery over permutation matrices. Hence, a random assignment
can be implemented by randomly drawing a permutation matrix from a Birkhoff-von-Neumann
decomposition and then allocating deterministic objects accordingly. A (random assignment) rule
is a mapping ϕ : Dn → L which specifies a random assignment at each profile of reported pref-
erences. Given P ∈ Dn, ϕia(P ) denotes the probability of agent i receiving object a, and ϕi(P )

denotes the lottery assigned to agent i. For notational convenience, given a subset B ⊆ A, let
ϕiB(P ) ≡

∑
a∈B ϕia(P ) denote the probability of agent i receiving an object in B at profile P .

Agents assess lotteries according to (first-order) stochastic dominance. Formally, given Pi ∈ D
and lotteries λ, λ′ ∈ ∆(A), λ stochastically dominates λ′ according to Pi, denoted λ P sd

i λ′,
if
∑k

l=1 λrl(Pi) >
∑k

l=1 λ
′
rl(Pi)

for all k = 1, . . . , n. Given P ∈ Dn, an assignment L is sd-
efficient if there exists no other L′ ∈ L Pareto dominating L, i.e., L′ 6= L and L′i P

sd
i Li for

all i ∈ I . Accordingly, a rule ϕ : Dn → L is sd-efficient (or sd-Eff) if ϕ(P ) is sd-efficient for
all P ∈ Dn. Next, a rule is sd-strategy-proof if for every agent, her lottery under truth-telling
always stochastically dominates her lottery induced by any misrepresentation according to her true
preference, regardless of others’ preference reporting. Formally, a rule ϕ : Dn → L is sd-strategy-
proof (or sd-SP) if for all i ∈ I , Pi, P ′i ∈ D and P−i ∈ Dn−1, ϕi(Pi, P−i) P sd

i ϕi(P
′
i , P−i). Last, for

fairness, given P ∈ Dn, an assignment L is said equal-treatment-of-equals if all agents reporting
the same preference receive the same lottery, i.e., for all i, j ∈ I , [Pi = Pj] ⇒ [Li = Lj], and a
rule ϕ : Dn → L is equal-treatment-of-equals (or ETE) if ϕ(P ) is equal-treatment-of-equals for
all P ∈ Dn. As a stronger notion of fairness, an assignment L is sd-envy-free if every agent treats
her own lottery weakly better than any other’s, i.e., Li P sd

i Lj for all i, j ∈ I . Accordingly, a rule
ϕ : Dn → L is sd-envy-free (or sd-EF) if ϕ(P ) is sd-envy-free for all P ∈ Dn. Henceforth, we
adopt the mentioned abbreviations of these four axioms throughout the paper.

2.1 The Probabilistic Serial Rule

In this section, we formally introduce an important random assignment rule, the probabilistic
serial (or PS) rule, which selects a random assignment at a given preference profile by the simulta-
neous eating algorithm with the uniform speed. Such an algorithm hypothetically treats the objects
infinitely divisible and specifies the random assignment by an iterative procedure. Starting from
time 0, every agent consumes her favorite object at the uniform speed, until an object reaches its
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exhaustion. Then, every agent resumes consuming her favorite object in the remaining ones at the
uniform speed until another object is exhausted. This procedure is repeated until all objects are
exhausted. Finally, the share of an object consumed by an agent is interpreted as the probability of
this agent receiving this object.

We borrow the notation of Kojima and Manea (2010) to formally define the PS rule. Given
P ∈ Dn, for any a ∈ A′ ⊆ A, let N(a,A′) ≡

{
i ∈ I : a Pi b for all b ∈ A′\{a}

}
be the set of

agents whose favorite object in A′ is a.

Definition 1 The Probabilistic Serial rule is a mapping PS : Dn → L, where given P ∈ Dn, the
random assignment PS(P ) is specified by the following iteration.

Initially, let t0 ≡ 0, A0 ≡ A, L0
ia ≡ 0 for all i ∈ I and a ∈ A.

For each v = 1, . . . , v̄, let

tv ≡ min
a∈Av−1

max
{
t ∈ [0, 1] :

∑
i∈I

Lv−1
ia + |N(a,Av−1)| · (t− tv−1) 6 1

}
, (1)

Av ≡ Av−1
∖{

a ∈ Av−1 :
∑

i∈I
Lv−1
ia + |N(a,Av−1)| · (tv − tv−1) = 1

}
, (2)

Lvia ≡

{
Lv−1
ia + (tv − tv−1) if i ∈ N(a,Av−1),

Lv−1
ia otherwise.

(3)

The final step v̄ is identified by Av̄ = ∅ and Av̄−1 6= ∅. Let PS(P ) ≡ [Lv̄ia]i∈I, a∈A.

For each period 1 6 v 6 v̄, tv−1 denotes the beginning of this period, Av−1 denotes the set of
available objects, and Lv−1 ≡ [Lv−1

ia ]i∈I,a∈A denotes the cumulative assignment. The end of the
v-th period tv is determined by the earliest time when some available object reaches its exhaustion,
as defined by Equation (1). Then, we update the set of available objects Av by excluding the
exhausted objects from Av−1, as shown in Equation (2). Last, according to Equation (3), we
update the cumulative assignment to Lv ≡ [Lvia]i∈I, a∈A by assigning to each agent tv − tv−1 share
of her favorite object in Av−1.

2.2 Weakly Connected Domains

We restrict attention to a large class of preference domains, weakly connected domains. For-
mally, two distinct preferences Pi, P ′i are called neighbors, denoted Pi ≈ P ′i , if whenever two
objects are oppositely ranked across Pi and P ′i , they are contiguously ranked at both Pi and P ′i ,
i.e.,

[a Pi b and b P ′i a]⇒ [a Pi! b and b P ′i ! a].

Note that across two neighbored preferences, no object is involved in more than one preference
reversal. Therefore, two neighbored preferences differ in locally switching several pair(s) of con-
tiguously ranked objects, i.e., there exist {(bl, al) : l = 1, . . . , t}, t > 1, and 1 6 k1 < k1 + 1 <

k2 < k2 + 1 < · · · < kt−1 < kt−1 + 1 < kt < n, such that (i) bl = rkl(Pi) = rkl+1(P ′i )

and al = rkl+1(Pi) = rkl(P
′
i ) for all l = 1, . . . , t, and (ii) [x Pi y] ⇔ [x P ′i y] for all

(x, y) 6∈ {(bl, al) : l = 1, . . . , t}. In particular, if two neighbored preferences Pi and P ′i dis-
agree on exactly one contiguously ranked pair of objects, they are called adjacent. We provide the
following example to illustrate.
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Example 1 Let preferences P1, P2 and P3 be specified as below.

P1 : a � c � b � d

P2 : a � b � c � d

P3 : b � a � d � c

It is evident that P1 and P2 are adjacent, and P2 and P3 are neighbors, while P1 and P3 have no
neighborhood relation. �

A domain D is weakly connected if for all distinct Pi, P ′i ∈ D, the difference of Pi and P ′i
can be reconciled via local switchings along a sequence of neighbored preferences in the domain,
i.e., there exists a path {P k

i }tk=1 ⊆ D connecting Pi and P ′i such that P 1
i = Pi, P t

i = P ′i , and
P k
i ≈ P k+1

i for all k = 1, . . . , t− 1.

Remark 1 The class of weakly connected domains includes various instances that are widely stud-
ied in the ordinal mechanism design literature (including random assignment models) under both
the one-dimensional and multidimensional settings: the universal domain (Gibbard, 1977; Ab-
dulkadiroğlu and Sönmez, 1998), the single-peaked domain (Moulin, 1980), the single-dipped
domain (Barberà et al., 2012), maximal single-crossing domains (Saporiti, 2009), the separable
domain (Le Breton and Sen, 1999), the top-separable domain (Le Breton and Weymark, 1999) and
the multidimensional single-peaked domain (Barberà et al., 1993).4 The notion of weak connected-
ness has also been extensively investigated in the literature of Condorcet domains (e.g., Monjardet,
2009; Puppe, 2018). Recently, some papers (e.g., Carroll, 2012; Sato, 2013; Cho, 2016a) study a
proper subset of weakly connected domains, and show that, to ensure sd-SP, it suffices to guarantee
that misreporting a preference adjacent to the sincere one is not profitable. �

3 Main Results

It is well known that there exists no sd-SP, sd-Eff and ETE rule on the universal domain. We in
this section investigate the preference restriction which restores the compatibility of these axioms.
First, we use an example to intuitively show a preference restriction, and explain how it helps to
ensure sd-SP of the PS rule. We then formally introduce our domain restriction, and prove that it
is a necessary condition for the existence of an sd-SP, sd-Eff and ETE rule in the class of weakly
connected domains. Last, we characterize the PS rule on our restricted domain via either sd-SP,
sd-Eff and ETE, or sd-Eff and sd-EF.

Example 2 Let A ≡ {a, b, c, d}. Given preference profiles P ≡ (P1, P2, P3, P4) and P ′ ≡
(P1, P2, P3, P

′
4), we specify the PS assignments PS(P ) and PS(P ′) below.

P1 : a � c � b � d PS(P ) : a b c d PS(P ′) : a b c d
P2 : a � b � c � d 1 : 1/2 0 1/4 1/4 1 : 1/3 0 5/12 1/4
P3 : b � a � c � d 2 : 1/2 0 1/4 1/4 2 : 1/3 2/9 7/36 1/4
P4 : b � a � c � d 3 : 0 1/2 1/4 1/4 3 : 0 5/9 7/36 1/4
P ′4 : a � b � c � d 4 : 0 1/2 1/4 1/4 4 : 1/3 2/9 7/36 1/4

It reveals that the PS rule is not sd-SP: PS4a(P )+PS4b(P ) = 1
2
< 5

9
= PS4a(P

′)+PS4b(P
′)

which says that by misreporting preference P ′4, agent 4 gets a higher probability of receiving an
4We put all formal definitions and the detailed verification in Appendix A.
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object strictly better than c in her true preference P4. This manipulation occurs because the eating
procedure of the PS rule is sensitive to deviations. In particular, agent 4’s misrepresentation (from
P4 to P ′4) makes a reach its exhaustion earlier (from 1

2
to 1

3
). Notice that agent 1 prefers c to b, while

all others prefer both a and b to c. Thus, from P to P ′, agent 1 starts to consume c earlier (from 1
2

to 1
3
), and hence consumes less a and b in total (from 1

2
to 1

3
). Consequently, agent 4 together with

2 and 3 consume more a and b in total (from 1
2

to 5
9
).

Next, we impose a tier-structure restriction on all agents’ preferences: Objects a and b always
occupy the top two ranking positions. Thus, preference P1 is no longer admissible. For instance,
consider two other profiles P̄ ≡ (P̄1, P2, P3, P4) and P̄ ′ ≡ (P̄1, P2, P3, P

′
4), and the corresponding

PS assignments below.

P̄1 : a � b � c � d PS(P̄ ) : a b c d PS(P̄ ′) : a b c d
P2 : a � b � c � d 1 : 1/2 0 1/4 1/4 1 : 1/3 1/6 1/4 1/4
P3 : b � a � c � d 2 : 1/2 0 1/4 1/4 2 : 1/3 1/6 1/4 1/4
P4 : b � a � c � d 3 : 0 1/2 1/4 1/4 3 : 0 1/2 1/4 1/4
P ′4 : a � b � c � d 4 : 0 1/2 1/4 1/4 4 : 1/3 1/6 1/4 1/4

It turns out that agent 4’s misrepresentation is no longer profitable. Due to this particular tier
structure, the combined probability of a and b assigned to agent 4 is fixed to 1

2
at both P̄ ′ and P̄ .

Consequently, the switch of a and b across P4 and P ′4 makes agent 4 worse off as he consumes
less of b at P̄ ′, i.e., PS4b(P̄

′) = 1
6
< 1

2
= PS4b(P̄ ). We therefore assert that the PS rule becomes

sd-SP. �

Now, we formally introduce our preference restrictions. Let P ≡ (Ak)
T
k=1 denote a tier struc-

ture, i.e., (i) block Ak ⊆ A is nonempty for all k = 1, . . . , T , (ii) Ak ∩ Ak′ = ∅ for all k 6= k′, and
(iii) ∪Tk=1Ak = A. Next, we impose an additional restriction to define a restricted tier structure:
Every block contains at most two objects, i.e., 1 6 |Ak| 6 2 for all k = 1, . . . , T . Then, we estab-
lish a (restricted) tier domain by requiring that the order of blocks in a tier structure be embedded
in all preferences.

Definition 2 A domain D is a tier domain if there exists a tier structure P ≡ (Ak)
T
k=1 such that

for all Pi ∈ D and a, b ∈ A, [a ∈ Ak, b ∈ Ak′ and k < k′] ⇒ [a Pi b]. Let D(P) denote the tier
domain containing all admissible preferences. In particular, D ⊆ D(P) is a restricted tier domain
if P is a restricted tier structure.

Note that all preferences of a restricted tier domain are pairwise neighbors. Hence, each re-
stricted tier domain is weakly connected.

Remark 2 In an auction model, Bikhchandani et al. (2006) study a class of domains with a par-
ticular tier structure, the order-based domains, where all (quasi linear) cardinal utilities induce
an identical ordinal preference on objects at each payment level. More recently, domains with
tier structures are also investigated in two-sided matchings (e.g., Akahoshi, 2014; Kandori et al.,
2010), school choice (e.g., Kesten, 2010; Kesten and Kurino, 2013), and spectrum license auctions
(Zhou and Serizawa, 2018). �

Remark 3 Notice that the restricted tier structure is a straightforward instance satisfying the value-
restriction condition of Sen (1966), which is a sufficient condition for majority voting to be well-
defined. A domain is value-restricted if for any three objects, one of them is never ranked either
the best (among these three objects) in all preferences, or the medium in all preferences, or the
worst in all preferences. �
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Now, we present our first main result.

Theorem 1 If a weakly connected domain admits an sd-SP, sd-Eff and ETE rule, it is a restricted
tier domain.

Proof : We prove Theorem 1 by two lemmas. Lemma 1 identifies two independent properties of
an arbitrary domain (unnecessarily weakly connected), each of which implies the nonexistence of
an sd-SP, sd-Eff and ETE rule. The first is called the local elevating property, while the second
is called the double elevating property. Lemma 2 then pins down the restricted tier structure
embedded in a weakly connected domain by cautiously avoiding the both properties.

We first introduce the local elevating property by a table of three preferences.

Ranking: k k + 1 k + 2

P̄i: · · · · · · · · ·︸ ︷︷ ︸ � a � c � b � · · · · · · · · ·
B(P̄i, a) = B(Pi, a)

Pi:
︷ ︸︸ ︷
· · · · · · · · ·︸ ︷︷ ︸ � a � b � c � · · · · · · · · ·

B(Pi, a) = B(P̂i, b)

P̂i:
︷ ︸︸ ︷
· · · · · · · · · � b � a � c � · · · · · · · · ·

Table 1: The local elevating property

Observe first that, P̄i, Pi and P̂i share an identical set of top (k− 1)-ranked objects, and may differ
in the rankings inside the identical set. Second, in all three preferences of Table 1, three objects
a, b and c cluster in three consecutive ranking positions. Last, object b takes three distinct positions
while the relative ranking between a and c is fixed. From P̄i to Pi, object b is raised from the
(k+ 2)-th position to the (k+ 1)-th position by locally overtaking c, while from Pi to P̂i, b is lifted
one position further by locally overtaking a. Note that P1, P2 and P3 of Example 2 satisfy the local
elevating property. We formally introduce the definition of the local elevating property below.

Definition 3 Domain D satisfies the local elevating property if there exist P̄i, Pi, P̂i ∈ D, a, b, c ∈
A and 1 6 k 6 n− 2 satisfying the following two conditions:

1. rk(P̄i) = a, rk+1(P̄i) = c, rk+2(P̄i) = b,
rk(Pi) = a, rk+1(Pi) = b, rk+2(Pi) = c,
rk(P̂i) = b, rk+1(P̂i) = a, rk+2(P̂i) = c, and

2. B(P̄i, a) = B(Pi, a) = B(P̂i, b).

The double elevating property differs from the local elevating property as we introduce an addi-
tional object d which is consecutively ranked below c in Pi, and ranks above c in P̂i. Consequently,
besides the same local elevating process of object b in Table 1, one would observe an additional
elevating process in the opposite direction: Object c overtakes d from the (k + 3)-th position at P̂i
to the (k + 2)-th position at Pi, and continues to overtake b from Pi to P̄i (see Table 2 below).
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k k + 1 k + 2 k + 3

P̄i: · · · · · · · · ·︸ ︷︷ ︸ � a � c � b � · � · · ·
B(P̄i, a) = B(Pi, a)

Pi:
︷ ︸︸ ︷
· · · · · · · · ·︸ ︷︷ ︸ � a � b � c � d � · · ·

B(Pi, a) = B(P̂i, b)

P̂i:
︷ ︸︸ ︷
· · · · · · · · · � b � a � d � c � · · ·

Table 2: The double elevating property

Definition 4 Domain D satisfies the double elevating property if there exist P̄i, Pi, P̂i ∈ D, a, b, c, d ∈
A, and 1 6 k 6 n− 3 satisfying the following two conditions:

1. rk(P̄i) = a, rk+1(P̄i) = c, rk+2(P̄i) = b,
rk(Pi) = a, rk+1(Pi) = b, rk+2(Pi) = c, rk+3(Pi) = d,
rk(P̂i) = b, rk+1(P̂i) = a, rk+2(P̂i) = d, rk+3(P̂i) = c, and

2. B(P̄i, a) = B(Pi, a) = B(P̂i, b).

Lemma 1 below implies that both the local elevating property and the double elevating property
are sufficient conditions for the nonexistence of an sd-SP, sd-Eff and ETE rule.

Lemma 1 A domain satisfying the local elevating property or the double elevating property admits
no sd-SP, sd-Eff and ETE rule.

The proof of Lemma 1 is put in Appendix B. We provide here an outline of the proof strategy.
Let domain D satisfy the local elevating property.5 Suppose that there exists an sd-SP, sd-Eff and
ETE rule ϕ : Dn → L. We illustrate below how a contradiction is identified in the case where n is
even.6 We first construct the following two preference profiles, which involve only the preferences
in Table 1.

• P 3,n
2 ≡ (P̂1, . . . , P̂n

2
−1, Pn

2
, Pn

2
+1, . . . , Pn−1, P̄n): Agents 1, . . . , n

2
− 1 report preference P̂i,

agents n
2
, n

2
+ 1, . . . , n− 1 report Pi, while agent n reports P̄i.

• P 4,n
2 ≡ (P̂1, . . . , P̂n

2
−1, P̂n

2
, Pn

2
+1, . . . , Pn−1, P̄n): Agents 1, . . . , n

2
− 1, n

2
report preference

P̂i, agents n
2

+ 1, . . . , n− 1 report Pi, while agent n reports P̄i.

Note that P 3,n
2 and P 4,n

2 differ exactly in agent n
2
’s preferences, i.e., P

3,n
2

n
2

= Pi and P
4,n

2
n
2

= P̂i.
Then, sd-SP requires ϕn

2
a(P

3,n
2 ) + ϕn

2
b(P

3,n
2 ) = ϕn

2
b(P

4,n
2 ) + ϕn

2
a(P

4,n
2 ). We will induce a

contradiction where this equality does not hold. In order to do so, we investigate two sequences of
preference profiles.

The first sequence starts from (P1, P2, . . . , Pn−1, P̄n), and gradually changes to P 3,n
2 by switch-

ing, one by one, the preferences of agents 1, 2, . . . , n
2
− 1 from Pi to P̂i. For each profile of this

sequence, we characterize the probabilities of a and b. Eventually, we determine ϕn
2
a(P

3,n
2 ) +

ϕn
2
b(P

3,n
2 ). The second sequence goes from (P̂1, P̂2, . . . , P̂n−1, P̄n) to P 4,n

2 , and changes, one

5When the domain satisfies instead the double elevating property, the same proof strategy applies.
6For the case of an odd number of agents, a similar contradiction can be identified with some extra effort.
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by one, agents n − 1, n − 2, . . . , n
2

+ 1’s preferences from P̂i to Pi. For each preference pro-
file in this sequence, we also characterize the probabilities of a and b. Eventually, we determine
ϕn

2
b(P

4,n
2 ) + ϕn

2
a(P

4,n
2 ), and verify that it is different from ϕn

2
a(P

3,n
2 ) + ϕn

2
b(P

3,n
2 ).

Now, according to Lemma 1, the hypothesis of Theorem 1 implies that the weakly connected
domain in question must violate both the local elevating and double elevating properties. The next
lemma utilizes the negation of both properties to elicit the embedded restricted tier structure.

Lemma 2 A weakly connected domain avoiding both the local elevating and double elevating
properties is a restricted tier domain.

The proof of Lemma 2 is put in Appendix C. We provide here a proof outline. Let D be a
weakly connected domain, and violate both the local elevating and double elevating properties.
We first show that among any three distinct preferences of D, if two pairs of them are neighbors,
then all three are pairwise neighbors. Consequently, by weak connectedness, since every pair of
distinct preferences is connected via a path, they must be neighbors. Therefore, all preferences of
D are pairwise neighbors. This implies that D must be a restricted tier domain.

In conclusion, combining Lemmas 1 and 2, we complete the proof of Theorem 1. �

Remark 4 Theorem 1 still holds when |A| 6= |I|. When |A| > |I| > 3, Lemma 1 holds by
arbitrarily choosing |A|−|I| objects as the commonly least preferred objects. When |I| > |A| > 4,
Lemma 1 still holds by introducing |I| − |A| new objects as the commonly least preferred objects.
In addition, Lemma 2 holds no matter whether |A| = |I| or not since it pins down the restricted tier
structure using only weak connectedness and the negation of both the local elevating and double
elevating properties. �

Remark 5 Our Lemma 1 generalizes the recent impossibility theorem of Chang and Chun (2017)
which says that there is no sd-SP, sd-Eff and ETE rule on a domain including three particular
preferences such that one object takes the bottom three ranking positions respectively while all
the other objects are identically ranked. Therefore, their preference condition is in fact a special
case of our local elevating property. The proof strategy of Chang and Chun (2017) is applicable
for showing the impossibility under the local elevating property, but becomes invalid under the
double elevating property. More importantly, our more stylized pattern of the local elevating and
double elevating properties allows us to pin down the restricted tier structure. �

Remark 6 If we strengthen the fairness axiom from ETE to sd-EF, the proof of Lemma 1 can be
significantly simplified (see Appendix D). �

The next result characterizes the PS rule as the unique desirable rule on a restricted tier domain.

Theorem 2 Let D be a restricted tier domain. Fix a rule ϕ : Dn → L. The following three
statements are equivalent:

(i) ϕ is sd-SP, sd-Eff and ETE.

(ii) ϕ is sd-Eff and sd-EF.

(iii) ϕ is the PS rule.
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Proof : Let P ≡ (Ak)
T
k=1 be a restricted tier structure, and D ⊆ D(P). We prove the theorem

by two steps. The first proves the equivalence between (i) and (iii), and the second shows the
equivalence between (ii) and (iii). Before these two steps, we present the following fact, which
observes that, due to the restricted tier structure embedded in domain D, the definition of the PS
rule (Definition 1) is significantly simplified.

Fact 1 Given P ∈ Dn, an assignment L = PS(P ) if and only if the following two conditions hold
for every block Ak, k = 1, . . . , T :

1. If Ak ≡ {a}, we have Lia = 1
n

for all i ∈ I .

2. If Ak ≡ {a, b}, let Ik ≡ {i ∈ I : a Pi b}, and we have L over Ak specified below:

[
|Ik| >

n

2

]
⇒

 a b

i ∈ Ik : 1
|Ik|

2
n
− 1
|Ik|

j /∈ Ik : 0 2
n

 , and
[
|Ik| 6

n

2

]
⇒

 a b

i ∈ Ik : 2
n

0

j /∈ Ik : 2
n
− 1

n−|Ik|
1

n−|Ik|

 .
Condition 1 says that if a block contains exactly one object, all agents equally share it. Con-

dition 2 specifies the assignment of two objects in the same block, say Ak = {a, b}. The set
Ik ≡ {i ∈ I : a Pi b} is either the majority group (if |Ik| > n

2
), or the minority group (if

|Ik| 6 n
2
). If Ik is the majority group, each agent of them consumes 1

|Ik|
share of a and 2

n
− 1
|Ik|

of
b, while each agent of I\Ik (provided I\Ik 6= ∅) only consumes 2

n
of b. If Ik is the minority group,

the symmetric case applies.
To see that the random assignment specified above is exactly the PS assignment of Definition

1, recall the eating procedure applied on a profile P of a restricted tier domain. If the top ranked
block contains exactly one object, every agent will consume 1

n
share of it. Otherwise, let the top

ranked block A1 ≡ {a, b}. Then, all agents of I1 ≡ {i ∈ I : a Pi b} will consume a, and
others will consume b until one object of A1 reaches its exhaustion, or both reach the exhaustion
simultaneously. Clearly, which object will be exhausted earlier depends on the relative size of I1

and I\I1. Specifically, according to Definition 1, we have the following observations:

• If |I1| = n
2
, then t1 = 2

n
, A1 = A\{a, b} and L1 =

 a b A\{a, b}
i ∈ I1 : 2

n
0 0

j /∈ I1 : 0 2
n

0

.

• If |I1| > n
2
, then t1 = 1

|I1| , A
1 = A\{a} and L1 =

 a b A\{a, b}
i ∈ I1 : 1

|I1| 0 0

j /∈ I1 : 0 1
|I1| 0

.

• If |I1| < n
2
, then t1 = 1

n−|I1| ,A
1 = A\{b} andL1 =

 a b A\{a, b}
i ∈ I1 : 1

n−|I1| 0 0

j /∈ I1 : 0 1
n−|I1| 0

.

In words, if t1 = 2
n

, then the whole block A1 is exhausted at time t1. If t1 6= 2
n

, all agents will
consume the remaining object inA1 after time t1 until the exhaustion of the whole blockA1. Then,
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according to Definition 1, we have t2 = 2
n

and A2 = A\{a, b}, and update the assignment to L2

below:

[
|I1| >

n

2

]
⇒ L2 =

 a b A\{a, b}
i ∈ I1 : 1

|I1|
2
n
− 1
|I1| 0

j /∈ I1 : 0 2
n

0

 , and

[
|I1| <

n

2

]
⇒ L2 =

 a b A\{a, b}
i ∈ I1 : 2

n
0 0

j /∈ I1 : 2
n
− 1

n−|I1|
1

n−|I1| 0

 .
Notice that every agent consumes 2

n
of a and b in combination. By examining the eating

procedure on all blocks consecutively, we eventually obtain the PS assignment as specified in
Fact 1. Thus, in the following two steps, we refer to Fact 1 as the definition of the PS rule.

Step 1: (i)⇔ (iii)
As shown in Example 2, it is easy to verify that the PS rule is sd-SP on domain D. We next

show (i) ⇒ (iii). We fix an arbitrary profile P ≡ (P1, P2, . . . , Pn) ∈ Dn, and show that ϕ(P ) is
exactly the one specified in Fact 1. The proof consists of three claims below.

Claim 1 ϕiAk
(P ) = |Ak|

n
for all i ∈ I and k = 1, . . . , T .

Fix arbitrary P̄1 = P̄2 = · · · = P̄n. Let P 0 ≡ (P̄1, P̄2, . . . , P̄n). We consider the following n
groups of preference profiles:

Group 1: P {i} ≡ (Pi, P̄−i) for each i ∈ I,
...

Group 1 6 l 6 n: P Î ≡ (PÎ , P̄−Î) for each Î ⊆ I with |Î| = l,

...

Group n: P I ≡ (P1, P2, . . . , Pn).

Note that for each 1 6 l 6 n, group l contains n!
l!(n−l)! preference profiles, and P I = P . We show

that for each group 1 6 l 6 n and each profile P Î of group l, ϕiAk
(P Î) = |Ak|

n
for all i ∈ I and

k = 1, . . . , T .
It is evident that ETE and feasibility imply ϕiAk

(P 0) = |Ak|
n

for all i ∈ I and k = 1, . . . , T . We
next provide an induction hypothesis: Given 0 < l 6 n, for every preference profile P Î of group
l − 1, we have ϕiAk

(P Î) = |Ak|
n

for all i ∈ I and k = 1, . . . , T . Given an arbitrary Î ⊆ I , let
|Î| = l, and we show ϕiAk

(P Î) = |Ak|
n

for all i ∈ I and k = 1, . . . , T .
Note that Î 6= ∅. For notational convenience, we assume w.l.o.g. that Î = {1, . . . , l}. Given

an arbitrary i ∈ Î , let Ī = Î\{i}. From P Î ≡ (P1, . . . , Pi−1, Pi, Pi+1, . . . , Pl, P̄−Î) to P Ī ≡
(P1, . . . , Pi−1, P̄i, Pi+1, . . . , Pl, P̄−Î), agent i unilaterally deviates from Pi to P̄i. Since Pi and P̄i
share the same ranking over all blocks A1, . . . , AT , sd-SP and the induction hypothesis imply
ϕiAk

(P Î) = ϕiAk
(P Ī) = |Ak|

n
for all k = 1, . . . , T . Therefore, we know ϕiAk

(P Î) = |Ak|
n

for all
i ∈ Î and k = 1, . . . , T . If l = n (equivalently, Î = I), we have completed the verification of
the induction hypothesis. Otherwise, since all agents of I\Î have the same preference, ETE and

feasibility imply ϕjAk
(P Î) =

|Ak|−l×
|Ak|
n

n−l = |Ak|
n

for all j ∈ I\Î and k = 1, . . . , T . Therefore,
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ϕiAk
(P Î) = |Ak|

n
for all i ∈ I and k = 1, . . . , T . This completes the verification of the induction

hypothesis, and hence proves the claim.

Thus, for each 1 6 k 6 T , if Ak is a singleton set, say Ak ≡ {a}, we have ϕia(P ) = 1
n

for all
i ∈ I . Therefore, ϕ(P ) meets the first condition of Fact 1. Next, fix an arbitrary blockAk ≡ {a, b}.
Let Ik ≡ {i ∈ I : aPi b} and l ≡ |Ik|. Assume w.l.o.g. that l > n

2
. The verification related to

l 6 n
2

is symmetric, and we hence omit it.

Claim 2 ϕja(P ) = 0 and ϕjb(P ) = 2
n

for all j ∈ I\Ik.

If l = n, then I\Ik = ∅, and the claim holds vacuously. Next, assume l < n. Thus, I\Ik 6= ∅.
Suppose that there exists j∗ ∈ I\Ik such that ϕj∗a(P ) > 0. Since each agent of Ik prefers a to b,
sd-Eff implies ϕib(P ) = 0 for all i ∈ Ik. Then, feasibility implies

∑
j∈I\Ik ϕjb(P ) = 1. Thus, there

are two cases to consider: (i) There exists j ∈ I\Ik such that ϕjb(P ) > 1
n−l , and (ii) ϕjb(P ) = 1

n−l
for all j ∈ I\Ik. For case (i), ϕjAk

(P ) ≡ ϕja(P ) + ϕjb(P ) > 1
n−l >

2
n

which contradicts
Claim 1. For case (ii), ϕj∗Ak

(P ) ≡ ϕj∗a(P ) +ϕj∗b(P ) > 1
n−l >

2
n

which also contradicts Claim 1.
Therefore, ϕja(P ) = 0 for all j ∈ I\Ik. Then, by Claim 1, we have ϕjb(P ) = 2

n
for all j ∈ I\Ik.

This completes the verification of the claim.

Claim 3 ϕia(P ) = 1
l

and ϕib(P ) = 2
n
− 1

l
for all i ∈ Ik.

Fix an arbitrary preference P̄i ∈ D with a P̄i b. We first construct preference profile P 0 ≡
(P̄Ik , P−Ik) where every agent of Ik reports preference P̄i, and every agent j ∈ I\Ik reports prefer-
ence Pj in profile P . To prove the claim, we consider the following l group of preference profiles:

Group 1: P {i} ≡ (Pi, P̄Ik\{i}, P−Ik) for each i ∈ Ik
...

Group 1 6 m 6 l: P Î ≡ (PÎ , P̄Ik\Î , P−Ik) for each Î ⊆ Ik with |Î| = m,

...

Group l: P Ik ≡ (PIk , P−Ik).

Note that for each 1 6 m 6 l, group m contains l!
m!(l−m)!

preference profiles, and P Ik = P .

We show that for each group 1 6 m 6 l and each profile P Î of group m, ϕia(P Î) = 1
l

and
ϕib(P

Î) = 2
n
− 1

l
for all i ∈ Ik.

First, similar to Claim 2, we have ϕja(P 0) = 0 and ϕjb(P 0) = 2
n

for all j ∈ I\Ik. Then, ETE

and feasibility imply ϕia(P 0) = 1
l

and ϕib(P 0) =
1− 2

n
×(n−l)
l

= 2
n
− 1

l
for all i ∈ Ik. Next, we

adopt an induction hypothesis: Given 0 < m 6 l, for every preference profile P Î of group m− 1,
we have ϕia(P Î) = 1

l
and ϕib(P Î) = 2

n
− 1

l
for all i ∈ Ik. Given an arbitrary Î ⊆ Ik, let |Î| = m,

and we show ϕia(P
Î) = 1

l
and ϕib(P Î) = 2

n
− 1

l
for all i ∈ Ik.

Note that Î 6= ∅. For notational convenience, we assume w.l.o.g. that Î = {1, . . . ,m}. Given
an arbitrary i ∈ Î , let Ī = Î\{i}. From P Î ≡ (P1, . . . , Pi−1, Pi, Pi+1, . . . , Pm, P̄Ik\Î , P−Ik) to
P Ī ≡ (P1, . . . , Pi−1, P̄i, Pi+1, . . . , Pm, P̄Ik\Î , P−Ik), agent i unilaterally deviates from Pi to P̄i.
Since Pi and P̄i share the same ranking over all blocks A1, . . . , AT , and both rank a over b, sd-SP
and the induction hypothesis imply ϕia(P Î) = ϕia(P

Ī) = 1
l

and ϕib(P Î) = ϕib(P
Ī) = 2

n
− 1

l
.

Therefore, we know ϕia(P
Î) = 1

l
and ϕib(P Î) = 2

n
− 1

l
for all i ∈ Î . If m = l (equivalently,
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Î = Ik), we have completed the verification of the induction hypothesis. Otherwise, we consider
agents of Ik\Î at profile P Î . Similar to Claim 2, we know ϕja(P

Î) = 0 and ϕjb(P
Î) = 2

n

for all j ∈ I\Ik. Then, ETE and feasibility imply ϕja(P
Î) =

1−m× 1
l

l−m = 1
l

and ϕjb(P
Î) =

1−m×( 2
n
− 1

l
)−(n−l)× 2

n

l−m = 2
n
− 1

l
for all j ∈ Ik\Î . Therefore, ϕia(P Î) = 1

l
and ϕib(P Î) = 2

n
− 1

l
for

all i ∈ Ik. This completes the verification of the induction hypothesis, and hence proves the claim.
Thus, by Claims 2 and 3, ϕ(P ) satisfies the second condition of Fact 1, as required. This

completes the verification of Step 1.

Step 2: (ii)⇔ (iii)
By Bogomolnaia and Moulin (2001), we know that the PS assignment at any preference profile

is sd-Eff and sd-EF. We show (ii)⇒ (iii).7

Fix an arbitrary profile P ∈ Dn. First, since all preferences of P share the same rankings over
all blocks A1, . . . , AT , sd-EF and feasibility imply ϕiAk

(P ) = |Ak|
n

for all i ∈ I and k = 1, . . . , T .
Thus, for each 1 6 k 6 T , if Ak is a singleton set, say Ak ≡ {a}, we have ϕia(P ) = 1

n
for all

i ∈ I . Therefore, ϕ(P ) meets condition 1 of Fact 1.
Second, fix an arbitrary block Ak ≡ {a, b}. Given Ik ≡ {i ∈ I : a Pi b}, we assume w.l.o.g.

that |Ik| = l > n
2
. The verification related to |Ik| = l 6 n

2
is symmetric, and we hence omit it. If

l = n, then all agents prefer a to b, and sd-EF and feasibility imply ϕia(P ) = 1
n
≡ 1

l
and ϕib(P ) =

1
n
≡ 2

n
− 1

l
for all i ∈ I , which meet condition 2 of Fact 1. Furthermore, assume l < n. We assert

ϕja(P ) = 0 for all j ∈ I\Ik. Suppose not, i.e., there exists j∗ ∈ I\Ik such that ϕj∗a(P ) > 0. Since
all agents of Ik prefer a to b, sd-Eff implies ϕib(P ) = 0 for all i ∈ Ik. Then, sd-EF and feasibility
imply ϕj∗b(P ) = 1

N−l . Consequently, ϕj∗Ak
(P ) ≡ ϕj∗a(P ) +ϕj∗b(P ) > 1

N−l >
2
n

. Contradiction!
Therefore, ϕja(P ) = 0 for all j ∈ I\Ik. Then, sd-EF and feasibility imply ϕia(P ) = 1

l
for all

i ∈ Ik. Last, since ϕia(P ) + ϕib(P ) = 2
n

for all i ∈ I , we have ϕib(P ) = 2
n
− 1

l
for all i ∈ Ik,

and ϕjb(P ) = 2
n

for all j ∈ I\Ik. This proves the second condition of Fact 1 on ϕ(P ), and hence
completes the verification of Step 2. �

Remark 7 Theorem 2 still holds when |I| 6= |A| and agents have outside options.8 In particular,
a preference is defined as a linear order on A ∪ {∅} where ∅ denotes an outside option, and we
extend the definition of restricted tier domains in the following sense: (i) An admissible prefer-
ence treats a certain number of top blocks as acceptable, i.e., better than the outside option, and (ii)
an admissible preference is only required to respect a restricted tier structure over its acceptable
blocks. This extended notion of restricted tier domains strictly nests the preference domain stud-
ied by Bogomolnaia and Moulin (2002), and therefore the extension of Theorem 2 implies their
characterization results. �

Remark 8 We notice that the random serial dictatorship rule remains sd-inefficient on a restricted
tier domain. For instance, at the profile P̄ of Example 2, the PS assignment Pareto dominates the

7For simplicity, we provide a direct proof. Alternatively, due to the restricted tier structure, we observe that each
preference profile satisfies the Type 1 and 3 decomposition conditions of Cho (2016b). Then, Theorem 3 of Cho
(2016b) implies that the PS assignment at each preference preference is the unique one satisfying sd-Eff and sd-EF.

8See the details in the working paper version which is available at http://ink.library.smu.edu.sg/soe_
research/1860/.
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random serial dictatorship assignment.

PS(P̄ ) : a b c d RSD(P̄ ) : a b c d

1 : 1/2 0 1/4 1/4 1 : 5/12 1/12 1/4 1/4
2 : 1/2 0 1/4 1/4 2 : 5/12 1/12 1/4 1/4
3 : 0 1/2 1/4 1/4 3 : 1/12 5/12 1/4 1/4
4 : 0 1/2 1/4 1/4 4 : 1/12 5/12 1/4 1/4

�

4 An Extension: Beyond Weak Connectedness

In this section, we investigate domains which are not weakly connected, and admit an sd-
SP, sd-Eff and ETE rule. As mentioned in the introduction, Theorem 1 implies that any domain
(not necessarily weakly connected) admitting an sd-SP, sd-Eff and ETE rule must be a union of
multiple restricted tier domains. Moreover, Lemma 1 implies that both the local elevating and
double elevating properties must be violated. We introduce the notion of dichotomous refinement
which systematically excludes preferences in order to reduce the instances of the local elevating
property. We then provide an algorithm which repeatedly applies dichotomous refinements, and
eventually generates a union of multiple restricted tier domains which completely avoids both the
local elevating and double elevating properties (see Lemma 3). More importantly, we show that
every domain generated by the algorithm is equivalent to a sequentially dichotomous domain of
Liu (2019), and therefore restores sd-SP on the PS rule (see Proposition 1).

Given a tier structure P = (A1, . . . , At−1, At, At+1, . . . , AT ), we say that two tier structures P
and P are the dichotomous refinements of P if exactly one block At breaks into two nonempty
subsets A1

t and A2
t , i.e., A1

t ∩ A2
t = ∅ and A1

t ∪ A2
t = At, such that

P = (A1, . . . , At−1, A
1
t , A

2
t , At+1, . . . , AT ) and P = (A1, . . . , At−1, A

2
t , A

1
t , At+1, . . . , AT ).

In particular, when |At| > 3, via dichotomous refinements, some preferences in the original tier
domain D(P) are excluded from the refined tier domains D(P) and D(P), which turn out to reduce
instances of the local elevating property. We present in the following example to illustrate. One can
easily see that the dichotomous refinements also reduce instances of the double elevating property
when |At| > 4.

Example 3 Let A ≡ {a, b, c, d} and P ≡ ({a}, {b, c, d}) be a tier structure. We break the block
{b, c, d} into {b, c} and {d}, and induce the dichotomous refinements P = ({a}, {b, c}, {d}) and
P = ({a}, {d}, {b, c}). When D(P) shrinks to D(P) ∪ D(P), the instance of the local elevating
property below which appeared in D(P) is eliminated because P̄i is excluded.

P̄i: a � c � d � b

Pi: a � c � b � d

P̂i: a � b � c � d

�

Now, we present the algorithm to repeatedly exclude preferences via a sequence of dichoto-
mous refinements, and eventually generate a union of restricted tier domains. We first introduce
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the notation used in the algorithm. Given a tier structureP = (A1, . . . , AT ), let A = {A1, . . . , AT}
denote the partition of A which collects all blocks in P .9

Algorithm: Initially, set Ω0 ≡ (A), A0 ≡ {A} and D(Ω0) ≡ P.

Step 1. Fixing an arbitrary nonempty proper subset Ā ⊂ A, let

• Ω1 ≡
{

(Ā, A\Ā), (A\Ā, Ā)
}

,

• D(Ω1) ≡ ∪P∈Ω1D(P) denote the union of corresponding tier domains, and

• A1 ≡ {Ā, A\Ā} be the corresponding partition of A.

If there exists a block of A1 containing more than 2 objects, proceed to the next step. Other-
wise, terminate the algorithm.

Step k > 1. Let At ∈ Ak−1 be an arbitrary block such that |At| > 2. Break At into two nonempty
subsets A1

t and A2
t . Then, let

• Ωk ≡ ∪P∈Ωk−1

{
P ,P : P and P are the corresponding dichotomous refinements of P

}
,

• D(Ωk) ≡ ∪P∈Ωk
D(P) denote the union of corresponding tier domains, and

• Ak ≡ {A1
t , A

2
t}∪Ak−1\{At} denotes the corresponding partition of A which replaces

At ∈ Ak−1 by A1
t and A2

t .

If there exists a block of Ak containing more than 2 objects, proceed to the next step. Oth-
erwise, terminate the algorithm.

It is evident that the algorithm terminates in finite steps. Notice that the outcome of the algo-
rithm varies according to the sequence of dichotomous refinements. Henceforth, we fix a sequence
of dichotomous refinements, and suppose that the algorithm terminates at step K. At each step
1 6 k 6 K, by refining the domain from D(Ωk−1) to D(Ωk), we reduce the number of instances
exhibiting the local elevating property. At the termination step K, we observe that the partition
AK contains K + 1 blocks, each block contains no more than 2 objects, and ΩK collects 2K re-
stricted tier structures over the K + 1 blocks. Therefore, we obtain a union of 2K restricted tier
domains D(ΩK) = ∪P∈ΩK

D(P). Moreover, the next lemma shows that D(ΩK) violates both the
local elevating and double elevating properties.

Lemma 3 Domain D(ΩK) avoids both the local elevating and double elevating properties.

The proof of Lemma 3 is put in Appendix E.
More importantly, the following proposition shows that domain D(ΩK) admits an sd-SP, sd-Eff

and sd-EF rule.

Proposition 1 Domain D(ΩK) admits an sd-SP, sd-Eff and sd-EF rule.

The proof of Proposition 1 is put in Appendix F.

9Formally, a partition of A is a collection of mutually exclusive and exhaustive nonempty subsets of A. Blocks
are not ordered in a partition, but linearly ordered in a tier structure.
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5 Conclusion

In this paper, we have shown that if a weakly connected domain admits an sd-SP, sd-Eff and
ETE rule, it is a restricted tier domain, and this desirable rule is uniquely the PS rule. Normatively,
we treat our domain characterization as a negative result, since a restricted tier structure almost
requires that all agents have the same preference, and it implies the nonexistence of sd-SP, sd-Eff
and ETE rules on almost all domains studied in the literature.

Our results help in understanding the boundary between possibilities and impossibilities on de-
signing a desirable random assignment rule. Within weakly connected domains, the exact boundary
is identified. Beyond weakly connected domains, although the exact boundary is not depicted, we
present an algorithm to construct unions of restricted tier domains, where possibility holds.

Appendix

A Details related to Remark 1

In this appendix, we first introduce six restricted domains, and then show that the universal
domain and all these six restricted domains are weakly connected domains. In particular, three re-
stricted domains are defined in the one-dimensional setting: the single-peaked domain, the single-
dipped domain and maximal single-crossing domains. The other three are defined in the multi-
dimensional setting: the separable domain, the top-separable domain and the multidimensional
single-peaked domain.

All three restricted domains in the one-dimensional setting share a common feature: Objects
are exogenously arranged on a linear order <. For notational convenience, let a 6 b denote either
a < b or a = b.

First, a preference Pi is single-peaked on < if, for each pair of objects at the same side of the
peak r1(Pi), the one closer to the peak in < is always preferred, i.e., [b < a 6 r1(Pi) or r1(Pi) 6
a < b] ⇒ [a Pi b]. The single-peaked domain is the set containing all preferences single-peaked
on <.

Second, a single-dipped preference performs exactly opposite to a single-peaked preference.
In particular, A preference Pi is single-dipped on < if [b < a 6 r|A|(Pi) or r|A|(Pi) 6 a < b] ⇒
[b Pi a]. The single-dipped domain is the set containing all preferences single-dipped on <.

Third, to define a single-crossing domain, an exogenous linear order C needs to be fixed be-
tween preferences. A domain D is single-crossing on (<,C) if for all a, b ∈ A with a < b and
Pi, P

′
i ∈ D with Pi C P ′i , we have [a P ′i b] ⇒ [a Pi b] and [b Pi a] ⇒ [b P ′i a]. Furthermore, a

single-crossing domain is maximal if it has the maximal cardinality |A|×(|A|−1)
2

+ 1.
According to Propositions 3 and 4 of Carroll (2012) and Propositions 4.1 and 4.2 of Sato

(2013), we know that in the universal domain, the single-peaked domain and a maximal single-
crossing domain, two distinct preferences are connected via a sequence of adjacent preferences.
Therefore, they are all weakly connected domains. The single-dipped domain is also a weakly
connected domain as the same argument for the single-peaked domain applies.

In the multidimensional setting, the object set A is assumed to have a Cartesian product struc-
ture, i.e., A = ×s∈MAs where (i) M ≡ {1, . . . ,m} is finite and m > 2, and (ii) for each s ∈ M ,
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the component set As contains finite and at least two elements. Thus, an object can be represented
by an m-tuple, i.e., a ≡ (a1, . . . , am) ≡ (as, a−s).

First, a preference Pi is separable if for each s ∈ M , a marginal preference over all elements
of the component set As can be independently elicited from Pi, i.e., for all as, bs ∈ As, we have
[(as, x−s) Pi (bs, x−s) for some x−s ∈ A−s] ⇒ [(as, y−s) Pi (bs, y−s) for all y−s ∈ A−s]. The
separable domain is the set containing all separable preferences.

Second, a top-separable preference is less restricted than a separable preference. A preference
Pi, say r1(Pi) = x ≡ (xs)s∈M , is top-separable if for all s ∈ M and as, bs ∈ As, we have
[as = xs and bs 6= xs] ⇒ [(as, z−s) Pi (bs, z−s) for all z−s ∈ A−s]. The top-separable domain is
the set containing all top-separable preferences.

Last, to introduce the multidimensional single-peaked domain, an additional restriction must
be imposed on the object set: For each s ∈ M , all element of As are exogenously arranged on a
linear order <s. Symmetrically, let as 6s bs denote either as <s bs or as = bs. Thus, all objects
are located on a product of linear orders, ×s∈M <s. Given x, y ∈ A, let MB(x, y) = {a ∈ A :

xs 6s as 6s ys or ys 6s as 6s xs for all s ∈ M} denote the minimal box collecting all objects
located between x and y. Now, a preference Pi is multidimensional single-peaked on ×s∈M <s

if for all a, b ∈ A, we have
[
a ∈MB

(
r1(Pi), b

)
and a 6= b

]
⇒ [a Pi b]. The multidimensional

single-peaked domain is the set containing all admissible preferences.
Chatterji and Zeng (2019) introduce a natural generalization of adjacency in the multidimen-

sional setting: Preferences Pi and P ′i are adjacent+ if the following two conditions are satisfied:

(1) Both Pi and P ′i are separable preferences.

(2) There exist s ∈M and as, bs ∈ As such that (as, z−s) Pi! (bs, z−s) and (bs, z−s) P ′i ! (as, z−s)

for all z−s ∈ A−s, and [x Pi y]⇔ [x P ′i y] for all (x, y) /∈
{(

(as, z−s), (bs, z−s)
)

: z−s ∈ A−s
}

.

One would note that across the adjacent+ pair Pi and P ′i , |A−s| pairs of objects are locally
switched, while all other objects are commonly ranked. Therefore, the notion of adjacency+ is a
special case of our neighborhood. Chatterji and Zeng (2019) show that in each one of the three
multidimensional domains, two distinct preferences are connected via a sequence of preferences
such that each consecutive pair is either adjacent or adjacent+. Therefore, all these three multidi-
mensional domains are weakly connected domains.

B Proof of Lemma 1

Suppose that D contains preferences P̄i, Pi, P̂i of Definition 3 or 4. For notational convenience,
let B ≡ B(P̄i, a) = B(Pi, a) = B(P̂i, b). Let ϕ : Dn → L be an sd-SP, sd-Eff and ETE rule. Let
n̄ ≡ n

2
if n is even, and n̄ ≡ n−1

2
if n is odd. We search for a contradiction. We consider six groups

of preference profiles: Profile Groups I - VI (Table 3 below). Note that every preference profile
in Table 3 consists of only preference(s) of P̄i, Pi and P̂i.
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Profile Group I: n is either even or odd Profile Group II: n is either even or odd

P 1,0 = (P1, . . . , Pn) P 2,0 = (P̂1, . . . , P̂n−1, P̂n)

P 1,m = (P̂1, . . . , P̂m, Pm+1, . . . , Pn), P 2,m = (P̂1, . . . , P̂n−m, Pn−m+1, . . . , Pn),

where m = 1, . . . , n̄. where m = 1, . . . , n̄.

Profile Group III: n is either even or odd Profile Group IV: n is either even or odd

P 3,1 = (P1, . . . , Pn−1, P̄n) P 4,1 = (P̂1, . . . , P̂n−2, P̂n−1, P̄n)

P 3,m = (P̂1, . . . , P̂m−1, Pm, . . . . . . . . . , Pn−1, P̄n), P 4,m = (P̂1, . . . , P̂n−m, Pn−m+1, . . . . . . . . . , Pn−1, P̄n),

where m = 2, . . . , n̄, n̄+ 1. where m = 2, . . . , n̄.

Profile Group V: n is odd Profile Group VI: n is odd

P 5,1 = (P1, . . . , Pn−2, P̄n−1, P̄n) P 6,2 = (P̂1, . . . , P̂n−2, P̄n−1, P̄n)

P 5,m = (P̂1, . . . , P̂m−1, Pm, . . . , Pn−2, P̄n−1, P̄n), P 6,m = (P̂1, . . . , P̂n−m, Pn−m+1, . . . , Pn−2, P̄n−1, P̄n),

where m = 2, . . . , n̄, n̄+ 1. where m = 3, . . . , n̄.

Table 3: Preference Profile Groups I - VI

Claim 4 Under both the local elevating and double elevating properties, at every profile P̃ of
profile groups I-VI, we have ϕiB(P̃ ) = k−1

n
for all i ∈ I .

Proof : The claim follows from a repeated application of sd-SP and ETE. The verification is
routine, and we hence omit the detailed proof. �

Claim 5 Under the local elevating property, at every profile P̃ of profile groups I-VI, we have∑
x∈{a,b,c} ϕix(P̃ ) = 3

n
for all i ∈ I .

Proof : The claim follows from a repeated application of sd-SP and ETE. The verification is
routine, and we hence omit the detailed proof. �

Claim 6 In profile group I, for each m = 0, 1, . . . , n̄, at P 1,m = (P̂1, . . . , P̂m, Pm+1, . . . , Pn), the
random assignment ϕ(P 1,m) over a, b, c and d is specified below.

a b c a b c d

1, . . . ,m: 0 2
n

1
n

1, . . . ,m: 0 2
n

0 2
n

m+ 1, . . . , n: 1
n−m

n−2m
n(n−m)

1
n

m+ 1, . . . , n: 1
n−m

n−2m
n(n−m)

1
n−m

n−2m
n(n−m)

Under the local elevating property Under the double elevating property

Proof : The proof consists of 2 steps. In the first step, we specify the random assignment over a
and b at every preference profile under both the local elevating and double elevating properties. In
the second step, by Claim 5, we first automatically obtain the random assignment over c under the
local elevating property. Next, we specify the random assignment over c and d at every preference
profile under the double elevating property.

Step 1: Under both the local elevating and double elevating properties, at P 1,0 = (P1, . . . , Pn),
ETE and feasibility imply ϕia(P 1,0) = 1

n
and ϕib(P 1,0) = 1

n
for all i ∈ I . Next, we provide an
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induction hypothesis: Given 0 < m 6 n̄, for all 0 6 l < m, the random assignment ϕ(P 1,l) over
a and b is specified below:

a b

1, . . . ,m : 0 2
n

m+ 1, . . . , n : 1
n−l

n−2l
n(n−l)

We specify the random assignment ϕ(P 1,m) over a and b to complete the verification of the induc-
tion hypothesis.

First, by the induction hypothesis, sd-SP implies ϕmb(P 1,m) + ϕma(P
1,m) = ϕmb(P

1,m−1) +

ϕma(P
1,m−1) = 2

n
. Then, ETE implies ϕib(P 1,m) + ϕia(P

1,m) = 2
n

for all i = 1, . . . ,m.

Furthermore, by ETE and feasibility, we have ϕjb(P 1,m) + ϕja(P
1,m) =

2−m× 2
n

n−m = 2
n

for all
j = m+ 1, . . . , n.

Next, we assert ϕia(P 1,m) = 0 for all i = 1, . . . ,m. Suppose not, i.e., there exists i∗ ∈
{1, . . . ,m} such that ϕi∗a(P 1,m) > 0. Since every agent other than 1, . . . ,m prefers a to b, sd-Eff
implies ϕjb(P 1,m) = 0 for all j = m+1, . . . , n. Then, ETE and feasibility imply ϕi∗b(P 1,m) = 1

m
.

Consequently, 2
n

= ϕi∗a(P
1,m) + ϕi∗b(P

1,m) > 1
m

. However, since m 6 n̄, one can easily show
2
n
6 1

m
. Contradiction! Therefore, ϕia(P 1,m) = 0 for all i = 1, . . . ,m. Thus, ϕib(P 1,m) = 2

n

for all i = 1, . . . ,m. Then, by ETE and feasibility, we have ϕja(P 1,m) = 1
n−m and ϕjb(P 1,m) =

1−m× 2
n

n−m = n−2m
n(n−m)

for all j = m + 1, . . . , n. This completes the verification of the induction
hypothesis and Step 1.

Step 2: Next, under the local elevating property, by Claim 5, we automatically obtain the random
assignment over c. Under the double elevating property, similar to Step 1, from P 1,0 to P 1,n̄ step
by step, by repeatedly applying sd-SP, sd-Eff, ETE and feasibility, we have the random assignment
over c and d. This proves the claim. �

Claim 7 In profile group II, for eachm = 0, 1, . . . , n̄, at P 2,m = (P̂1, . . . , P̂n−m, Pn−m+1, . . . , Pn),
the random assignment ϕ(P 2,m) over a, b, c and d is specified below.

a b c a b c d

1, . . . , n−m: n−2m
n(n−m)

1
n−m

1
n

1, . . . , n−m: n−2m
n(n−m)

1
n−m

n−2m
n(n−m)

1
n−m

n−m+ 1, . . . , n: 2
n

0 1
n

n−m+ 1, . . . , n: 2
n

0 2
n

0

Under the local elevating property Under the double elevating property

Proof : The verification is symmetric to the proof of Claim 6. �

Claim 8 In profile group III, under both the local elevating and double elevating properties, at
P 3,1 = (P1, . . . , Pn−1, P̄n), the random assignment ϕ(P 3,1) over a, b and c is specified below.

a b c

1, . . . , n− 1 : 1
n

1
n−1

n−2
n(n−1)

n : 1
n

0 2
n
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Proof : The proof consists of 2 steps.

Step 1: First, by Claim 6, sd-SP implies ϕna(P 3,1) = ϕna(P
1,0) = 1

n
. Next, sd-Eff implies

ϕnb(P
3,1) = 0. Then, by ETE and feasibility, we have ϕia(P 3,1) = 1

n
and ϕib(P 3,1) = 1

n−1
for all

i = 1, . . . , n− 1.

Step 2: First, by Claim 6, sd-SP implies ϕnc(P 3,1) + ϕnb(P
3,1) = ϕnb(P

1,0) + ϕnc(P
1,0) = 2

n
.

Since ϕnb(P 3,1) = 0 in Step 1, we have ϕnc(P 3,1) = 2
n

. Then, by ETE and feasibility, we have

ϕic(P
3,1) =

1− 2
n

n−1
= n−2

n(n−1)
for all i = 1, . . . , n− 1. �

Claim 9 In profile group III, for each m = 2, . . . , n̄ (if n is even), or m = 2, . . . , n̄, n̄ + 1 (if n is
odd), at P 3,m = (P̂1, . . . , P̂m−1, Pm, . . . , Pn−1, P̄n), the random assignment ϕ(P 3,m) over a, b and
c is specified below

a b c

1, . . . ,m− 1: 0 α(m) 3
n
− α(m)

m, . . . , n− 1: 1
n−(m−1)

1−(m−1)×α(m)
n−m

3
n
− 1

n−(m−1)
− 1−(m−1)×α(m)

n−m

n: 1
n−(m−1)

0 3
n
− 1

n−(m−1)

Under the local elevating property

a b c

1, . . . ,m− 1: 0 α(m) 0

m, . . . , n− 1: 1
n−(m−1)

1−(m−1)×α(m)
n−m

n−2
n(n−m)

n: 1
n−(m−1)

0 2
n

Under the double elevating property

where α(m) = 2n2−(2m−1)n+1
n(n−1)[n−(m−1)]

.

Proof : The proof consists of 3 steps. In the first step, we specify the random assignment over
a and b under both the local elevating and double elevating properties. By Claim 5, we then
automatically obtain the random assignment over c under the local elevating property. In the
second step, we make two observations on the random assignment under the double elevating
property, while the last step specifies the random assignment over c under the double elevating
property.

Step 1: By Claim 6, sd-SP implies ϕna(P 3,2) = ϕna(P
1,1) = 1

n−1
. Symmetrically, by Claim 8,

sd-SP implies ϕ1b(P
3,2) + ϕ1a(P

3,2) = ϕ1b(P
3,1) + ϕ1a(P

3,1) = 1
n

+ 1
n−1

. Next, by sd-Eff, we
have ϕnb(P 3,2) = 0 and ϕ1a(P

3,2) = 0. Thus, ϕ1b(P
3,2) = 1

n
+ 1

n−1
= 2n−1

n(n−1)
= α(2). Last, by

ETE and feasibility, we have ϕia(P 3,2) = 1
n−1

and ϕib(P 3,2) = 1−(2−1)α(2)
n−2

for all i = 2, . . . , n− 1.
Next, we adopt an induction hypothesis: Given 2 < m 6 n̄ (if n̄ = n

2
), or 2 < m 6 n̄ + 1 (if

n̄ = n−1
2

), for all 2 6 l < m, we have the random assignment ϕ(P 3,l) over a and b as follows:

a b

1, . . . , l − 1: 0 α(l)

l, . . . , n− 1: 1
n−(l−1)

1−(l−1)×α(l)
n−l

n: 1
n−(l−1)

0
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We specify the random assignment ϕ(P 3,m) over a and b to complete the verification of the induc-
tion hypothesis.

By Claim 6, sd-SP implies ϕna(P 3,m) = ϕna(P
1,m−1) = 1

n−(m−1)
. By sd-Eff, we have

ϕnb(P
3,m) = 0. Next, by sd-SP and the induction hypothesis, we have

ϕm−1 b(P
3,m) + ϕm−1 a(P

3,m) = ϕm−1 a(P
3,m−1) + ϕm−1 b(P

3,m−1)

=
1

n− (m− 2)
+

1− (m− 2)× α(m− 1)

n− (m− 1)

=
1

n− (m− 2)
+

1− (m− 2)×
[

2n2−[2(m−1)−1]n+1
n(n−1)[n−(m−2)]

]
n− (m− 1)

=
2n2 − (2m− 1)n+ 1

n(n− 1)[n− (m− 1)]

= α(m).

Furthermore, ETE implies ϕib(P 3,m) + ϕia(P
3,m) = α(m) for all i = 1, . . . ,m− 1.

Last, we show ϕia(P
3,m) = 0 for all i = 1, . . . ,m − 1. Suppose not, i.e., there exists i∗ ∈

{1, . . . ,m − 1} such that ϕi∗a(P 3,m) > 0. Since every agent other than 1, . . . ,m − 1 prefers
a to b, sd-Eff implies ϕjb(P 3,m) = 0 for all j = m, . . . , n. Then, ETE and feasibility imply
ϕi∗b(P

3,m) = 1
m−1

. Consequently, α(m) = ϕi∗a(P
3,m) + ϕi∗b(P

3,m) > 1
m−1

. However, one can
easily show

1

m− 1
− α(m) =

1

m− 1
− 2n2 − (2m− 1)n+ 1

n(n− 1)[n− (m− 1)]
=
n(n−m)[n− 2(m− 1)]− (m− 1)

(m− 1)n(n− 1)[n− (m− 1)]

>

{
2n2−n+2

2(m−1)n(n−1)[n−(m−1)]
> 0 if n is even,

(n−1)2

2(m−1)n(n−1)[n−(m−1)]
> 0 if n is odd.

Contradiction! Therefore, ϕia(P 3,m) = 0 for all i = 1, . . . ,m− 1. Hence, ϕib(P 3,m) = α(m) for

all i = 1, . . . ,m − 1. Last, by ETE and feasibility, we have ϕja(P 3,m) =
1− 1

n−(m−1)

n−m = 1
n−(m−1)

and ϕjb(P 3,m) = 1−(m−1)×α(m)
n−m for all j = m, . . . , n − 1. In conclusion, we have the random

assignment ϕ(P 3,m) over a and b as follows:

a b

1, . . . ,m− 1: 0 α(m)

m, . . . , n− 1: 1
n−(m−1)

1−(m−1)α(m)
n−m

n: 1
n−(m−1)

0

This completes the verification of the induction hypothesis and Step 1.

Step 2: Under the local elevating property, by Claim 5, we have the random assignment over c at
each preference profile. We focus on specifying the random assignment over c under the double
elevating property. We first make two observations: For each m = 2, . . . , n̄ (if n is even), or
m = 2, . . . , n̄, n̄+ 1 (if n is odd), at P 3,m = (P̂1, . . . , P̂m−1, Pm, . . . , Pn−1, P̄n),

OBSERVATION 1. if rk+3(P̄i) = d, we have
∑

x∈{a,b,c,d} ϕix(P
3,m) = 4

n
for all i ∈ I .

OBSERVATION 2. if rk+3(P̄i) 6= d, we have ϕic(P 3,m) + ϕid(P
3,m) = 2

n
for all i ∈ I .
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The first observation is similar to Claim 5. We prove the second observation. Let rk+3(P̄i) 6= d.
Consequently, ϕnd(P 3,2) = 0 by sd-Eff. Next, by Claim 6, sd-SP implies ϕnc(P 3,2) +ϕnb(P

3,2) =

ϕnb(P
1,1) + ϕnc(P

1,1) = 2
n

. Since ϕnb(P 3,2) = 0 in Step 1, we have ϕnc(P 3,2) = 2
n

, and hence
ϕnc(P

3,2) + ϕnd(P
3,2) = 2

n
. Next, recall profile P 3,1 = (P1, . . . , Pn−1, P̄n). Since rk+3(P̄i) 6= d,

sd-Eff implies ϕnd(P 3,1) = 0. Then, ETE and feasibility imply ϕ1d(P
3,1) = 1

n−1
. Hence, by Claim

8, we haveϕ1c(P
3,1)+ϕ1d(P

3,1) = n−2
n(n−1)

+ 1
n−1

= 2
n

. Then, sd-SP impliesϕ1d(P
3,2)+ϕ1c(P

3,2) =

ϕ1c(P
3,1) + ϕ1d(P

3,1) = 2
n

. Last, by ETE and feasibility, we have ϕic(P 3,2) + ϕid(P
3,2) =

2− 2
n
− 2

n

n−2
= 2

n
for all i = 2, . . . , n− 1.

Next, we adopt an induction hypothesis: Given 2 < m 6 n̄ (if n is even), or 2 < m 6 n̄ + 1

(if n is odd), for all 2 6 l < m, we have ϕic(P 3,l) + ϕid(P
3,l) = 2

n
for all i ∈ I . We show

ϕic(P
3,m) + ϕid(P

3,m) = 2
n

for all i ∈ I .
First, by sd-Eff, we have ϕnd(P 3,m) = 0. Next, by Claim 6, sd-SP implies ϕnc(P 3,m) +

ϕnb(P
3,m) = ϕnb(P

1,m−1) + ϕnc(P
1,m−1) = 2

n
. Since ϕnb(P

3,m) = 0 in Step 1, we have
ϕnc(P

3,m) = 2
n

, and hence ϕnc(P 3,m) + ϕnd(P
3,m) = 2

n
. Next, by sd-SP and the induction hy-

pothesis, we have ϕm−1 c(P
3,m) +ϕm−1 d(P

3,m) = ϕm−1 c(P
3,m−1) +ϕm−1 d(P

3,m−1) = 2
n

. Then,
ETE implies ϕic(P 3,m) + ϕid(P

3,m) = 2
n

for all i = 1, . . . ,m − 1. Last, by ETE and feasibility,

we have ϕjc(P 3,m) + ϕjd(P
3,m) =

2− 2
n
−(m−1) 2

n

n−m = 2
n

for all j = m, . . . , n− 1. This completes the
verification of the induction hypothesis, and hence proves the second observation.

Step 3: Now, we show the random assignment over c at each preference profile.
First, by Claim 6, sd-SP implies ϕnc(P 3,2) + ϕnb(P

3,2) = ϕnb(P
1,1) + ϕnc(P

1,1) = 2
n

. Since
ϕnb(P

3,2) = 0 in Step 1, we have ϕnc(P 3,2) = 2
n

. Next, sd-Eff implies ϕ1c(P
3,2) = 0. Then, by

ETE and feasibility, we have ϕic(P 3,2) =
1− 2

n

n−2
= n−2

n(n−2)
for all i = 2, . . . , n− 1.

Next, we adopt an induction hypothesis: Given 2 < m 6 n̄ (if n is even), or 2 < m 6 n̄+ 1 (if
n is odd), for all 2 6 l < m, we have (i) ϕic(P 3,l) = 0 for all i = 1, . . . , l−1, (ii) ϕjc(P 3,l) = n−2

n(n−l)
for all j = l, . . . , n− 1, and (iii) ϕnc(P 3,l) = 2

n
. We show ϕic(P

3,m) = 0 for all i = 1, . . . ,m− 1,
ϕjc(P

3,m) = n−2
n(n−m)

for all j = m, . . . , n− 1, and ϕnc(P 3,m) = 2
n

.
First, by Claim 6, sd-SP implies ϕnc(P 3,m) + ϕnb(P

3,m) = ϕnb(P
1,m−1) + ϕnc(P

1,m−1) = 2
n

.
Since ϕnb(P

3,m) = 0 in Step 1, we have ϕnc(P
3,m) = 2

n
. Next, suppose that there exists

i∗ ∈ {1, . . . ,m − 1} such that ϕi∗c(P 3,m) > 0. Since every agent other than 1, . . . ,m − 1

prefers c to d, sd-Eff implies ϕjd(P 3,m) = 0 for all j = m, . . . , n. Then, ETE and feasibility
imply ϕm−1 d(P

3,m) = 1
m−1

. Hence, ϕm−1 d(P
3,m) + ϕm−1 c(P

3,m) > 1
m−1

. If rk+3(P̄i) = d, by
Observation 1, we have

4

n
=
[
ϕm−1 b(P

3,m) + ϕm−1 a(P
3,m)

]
+
[
ϕm−1 d(P

3,m) + ϕm−1 c(P
3,m)

]
> α(m) +

1

m− 1
.

However, if n is even, one can easily show that[
α(m) +

1

m− 1

]
− 4

n
=

2n2 − (2m− 1)n+ 1

n(n− 1)[n− (m− 1)]
+

1

m− 1
− 4

n

>
2n2 − (2m− 1)n+ 1

n(n− 1)[n− (m− 1)]
+

2

n− 2
− 4

n

=
5n2 − 6mn+ n+ 8m− 10

n(n− 1)(n− 2)[n− (m− 1)]

>
2n2 + n+ 8m− 10

n(n− 1)(n− 2)[n− (m− 1)]
> 0,
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and if n is odd, one can easily show that[
α(m) +

1

m− 1

]
− 4

n
=

2n2 − (2m− 1)n+ 1

n(n− 1)[n− (m− 1)]
+

1

m− 1
− 4

n

>
2n2 − (2m− 1)n+ 1

n(n− 1)[n− (m− 1)]
+

2

n− 1
− 4

n

=
3n+ 5− 4m

n(n− 1)[n− (m− 1)]

>
n+ 3

n(n− 1)[n− (m− 1)]
> 0.

Contradiction! If rk+3(P̄i) 6= d, by Observation 2, we have 2
n

= ϕm−1 d(P
3,m) + ϕm−1 c(P

3,m) >
1

m−1
. However, one can easily observe 2

n
< 1

m−1
. Contradiction! Therefore, ϕic(P 3,m) = 0 for

all i = 1, . . . ,m − 1. Last, by ETE and feasibility, we have ϕjc(P 3,m) =
1− 2

n

n−m = n−2
n(n−m)

for all
j = m, . . . , n−1. This completes the verification of the induction hypothesis. We hence finish the
specification of the random assignment over c at each preference profile of profile group III under
the double elevating property. This proves the claim. �

Claim 10 In profile group IV, for eachm = 1, . . . , n̄, at P 4,m = (P̂1, . . . , P̂n−m, Pn−m+1, . . . , Pn−1, P̄n),
the random assignment ϕ(P 4,m) over a, b and c is specified below.

a b c a b c

1, . . . , n−m: n−2m
n(n−m)

1
n−m

1
n

1, . . . , n−m: n−2m
n(n−m)

1
n−m

n−2m
n(n−m)

n−m+ 1, . . . , n− 1: 2
n

0 1
n

n−m+ 1, . . . , n− 1: 2
n

0 2
n

n: 2
n

0 1
n

n: 2
n

0 2
n

Under the local elevating property Under the double elevating property

Proof : The proof of this claim consists of two steps. In the first step, we specify the random
assignment over a and b under both the local elevating and the double elevating properties. By
Claim 5, we then automatically obtain the random assignment over c under the local elevating
property. In the second step, we specify the random assignment over c under the double elevating
property.

Step 1: First, by Claim 7, sd-SP implies ϕna(P 4,1) = ϕna(P
2,1) = 2

n
. Next, sd-Eff implies

ϕnb(P
4,1) = 0. Then, by ETE and feasibility, we have ϕib(P 4,1) = 1

n−1
and ϕia(P 4,1) =

1− 2
n

n−1
=

n−2
n(n−1)

for all i = 1, . . . , n− 1.
Next, we provide an induction hypothesis: Given 1 < m 6 n̄, for all 2 6 l < m, we have the

random assignment ϕ(P 4,l) over a and b specified below.

a b

1, . . . , n− l: n−2l
n(n−l)

1
n−l

n− l + 1, . . . , n− 1: 2
n

0

n: 2
n

0

We specify the random assignment ϕ(P 4,m) over a and b to complete the verification of the induc-
tion hypothesis.
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First, by Claim 7, sd-SP impliesϕna(P 4,m) = ϕna(P
2,m) = 2

n
. Next, sd-Eff impliesϕnb(P 4,m) =

0. By the induction hypothesis, sd-SP impliesϕn−m+1 a(P
4,m)+ϕn−m+1 b(P

4,m) = ϕn−m+1 b(P
4,m−1)+

ϕn−m+1 a(P
4,m−1) = 2

n
. Then, ETE implies ϕja(P 4,m) + ϕjb(P

4,m) = 2
n

for all j = n − m +

1, . . . , n − 1. Suppose that there exists j∗ ∈ {n −m + 1, . . . , n − 1} such that ϕj∗b(P 4,m) > 0.
Since every agent other than n−m+ 1, . . . , n− 1 prefers b to a, sd-Eff implies ϕia(P 4,m) = 0 for
all i = 1, . . . , n −m,n. Consequently, ETE and feasibility imply ϕj∗a(P 4,m) =

1− 2
n

m−1
= n−2

n(m−1)
.

Hence, 2
n

= ϕj∗a(P
4,m) + ϕj∗b(P

4,m) > n−2
n(m−1)

. However, one can easily show 2
n
6 n−2

n(m−1)
.

Therefore, ϕjb(P 4,m) = 0 for all j = n − m + 1, . . . , n − 1. Hence, ϕja(P 4,m) = 2
n

for
all j = n − m + 1, . . . , n − 1. Last, by ETE and feasibility, we have ϕib(P 4,m) = 1

n−m and

ϕia(P
4,m) =

1−m× 2
n

n−m = n−2m
n(n−m)

for all i = 1, . . . , n − m. In conclusion, we have the random
assignment ϕ(P 4,m) over a and b specified below.

a b

1, . . . , n−m: n−2m
n(n−m)

1
n−m

n−m+ 1, . . . , n− 1: 2
n

0

n: 2
n

0

This completes the verification of the induction hypothesis and Step 1.

Step 2: Under the local elevating property, by applying Claim 5, we have the random assignment
over c at each preference profile. We focus on specifying the random assignment over c at each
preference profile under the double elevating property.

First, by Claim 7, sd-SP implies ϕnc(P 4,1) + ϕnb(P
4,1) = ϕnc(P

2,1) + ϕnb(P
2,1) = 2

n
. Since

ϕnb(P
4,1) = 0 in Step 1, we have ϕnc(P

4,1) = 2
n

. Then, by ETE and feasibility, we have

ϕic(P
4,1) =

1− 2
n

n−1
= n−2

n(n−1)
. Meanwhile, note that sd-Eff implies ϕnd(P 4,1) = 0. Therefore,

ϕid(P
4,1) = 1

n−1
for all i = 1, . . . , n− 1 by ETE and feasibility. Hence, ϕic(P 4,1) +ϕid(P

4,1) = 2
n

for all i ∈ I .
Next, we adopt an induction hypothesis: Given 1 < m 6 n̄, for all 1 6 l < m, we have

(i) ϕic(P 4,l) = n−2l
n(n−l) for all i = 1, . . . , n− l,

ϕjc(P
4,l) = 2

n
for all j = n− l + 1, . . . , n− 1, and

ϕnc(P
4,l) = 2

n
, and

(ii) ϕic(P 4,l) + ϕid(P
4,l) = 2

n
for all i ∈ I .

We show that (i) ϕic(P 4,m) = n−2m
n(n−m)

for all i = 1, . . . , n − m, ϕjc(P 4,m) = 2
n

for all j =

n−m+ 1, . . . , n− 1, and ϕnc(P 4,m) = 2
n

, and (ii) ϕic(P 4,m) + ϕid(P
4,m) = 2

n
for all i ∈ I .

First, by Claim 7, sd-SP implies ϕnc(P 4,m)+ϕnb(P
4,m) = ϕnc(P

2,m)+ϕnb(P
2,m) = 2

n
. Since

ϕnb(P
4,m) = 0 in Step 1, we have ϕnc(P 4,m) = 2

n
. Note that ϕnd(P 2,m) = 0 by Claim 7, Pi and P̄i

have the same set of top k + 2 ranked objects, d = rk+3(Pi) and d = rν(P̄i) for some ν > k + 3.
Therefore, sd-SP implies 0 = ϕnd(P

2,m) > ϕnd(P
4,m). Hence, ϕnd(P 4,m) = 0. Thus, we have

ϕnc(P
4,m) + ϕnd(P

4,m) = 2
n

.
Next, by sd-SP and the induction hypothesis, we have ϕn−m+1 c(P

4,m) + ϕn−m+1 d(P
4,m) =

ϕn−m+1 d(P
4,m−1) + ϕn−m+1 c(P

4,m−1) = 2
n

. Then, ETE implies ϕjc(P 4,m) + ϕjd(P
4,m) = 2

n
for

all j = n −m + 1, . . . , n − 1. Then, by ETE and feasibility, we have ϕic(P 4,m) + ϕid(P
4,m) =

2−(m−1) 2
n
− 2

n

n−m = 2
n

for all i = 1, . . . , n−m. Hence, ϕic(P 4,m) + ϕid(P
4,m) = 2

n
for all i ∈ I .

25



Next, suppose that there exists j∗ ∈ {n − m + 1, . . . , n − 1} such that ϕj∗d(P 4,m) > 0.
Since every agent other than n −m + 1, . . . , n − 1 prefers d to c, sd-Eff implies ϕic(P 4,m) = 0

for all i = 1, . . . , n − m,n. Then, ETE and feasibility imply ϕj∗c(P
4,m) =

1− 2
n

m−1
= n−2

n(m−1)
.

Thus, 2
n

= ϕj∗c(P
4,m) + ϕj∗d(P

4,m) > n−2
n(m−1)

. However, one can easily show 2
n
6 n−2

n(m−1)
.

Contradiction! Therefore, ϕjd(P 4,m) = 0 for all j = n−m+ 1, . . . , n− 1. Hence, ϕjc(P 4,m) = 2
n

for all j = n−m+ 1, . . . , n− 1.
Last, by ETE and feasibility, we have ϕic(P 4,m) =

1−(m−1) 2
n
− 2

n

n−m = n−2m
n(n−m)

for all i = 1, . . . , n−
m. This completes the verification of the induction hypothesis. We hence finish the specification
of the random assignment over c at each preference profile under the double elevating property.
This proves the claim. �

Now, we induce the contradiction for the case of an even number of agents. Let n > 4 be
an even integer. Thus, n̄ = n

2
. Notice that P 3,n̄ and P 4,n̄ differ exactly in agent n̄’s preference,

i.e., P 3,n̄
n̄ = Pi and P 4,n̄

n̄ = P̂i in Definition 3 or 4. Then, sd-SP implies ϕn̄a(P 3,n̄) + ϕn̄b(P
3,n̄) =

ϕn̄a(P
4,n̄) + ϕn̄b(P

4,n̄). Thus, by Claims 9 and 10, we have

0 =
[
ϕn̄a(P

3,n̄) + ϕn̄b(P
3,n̄)
]
−
[
ϕn̄a(P

4,n̄) + ϕn̄b(P
4,n̄)
]

=

[
1

[n− (n
2
− 1)]

+
1− (n

2
− 1)α(n

2
)

n− n
2

]
− 2

n
=

2

n2(n− 1)
. Contradiction!

In conclusion, in the case of an even number of agents, domain D satisfying the local elevating
property or the double elevating property admits no sd-SP, sd-Eff and ETE rule.

Before turning to the case of an odd number of agents, we make one note on the case of an even
number of agents. In all Claims 6 - 10, only the specification of the random assignment over a and
b (correspondingly, Step 1 in the proof of each claim) is used to establish the impossibility result.
The specification of the random assignment over c is established for the following-up investigation
in the case of an odd number of agents.

Now, we consider the case of an odd number of agents. Henceforth, let n > 5 be an odd
integer. Thus, n̄ = n−1

2
. Claim 11 below is a preparation which will be used in establishing the

following-up claims.

Claim 11 In profile group III, under both the local elevating and double elevating properties, for
each m = 2, . . . , n̄, n̄ + 1, at P 3,m = (P̂1, . . . , P̂m−1, Pm, . . . , Pn−1, P̄n), we have ϕn−1 b(P

3,m) +

ϕn−1 c(P
3,m) < 2

n−1
.

Proof : We first consider the situation under the local elevating property. Fix 2 6 m 6 n̄ + 1.
By Claim 9, we know ϕn−1 b(P

3,m) + ϕn−1 c(P
3,m) = 3

n
− 1

n−(m−1)
. Then, it is easy to show that

3
n
− 1

n−(m−1)
− 2

n−1
6 3

n
− 1

n−1
− 2

n−1
< 0.

Next, we consider the situation under the double elevating property. By Claim 9, for each
m = 2, . . . , n̄, n̄+ 1, we have

2

n− 1
−
[
ϕn−1 b(P

3,m) + ϕn−1 c(P
3,m)

]
=

2

n− 1
−
[

1− (m− 1)× α(m)

n−m
+

n− 2

n(n−m)

]
=

2

n− 1
− 2(n− 1)2[n− (m− 1)]− (m− 1)[2n2 − (2m− 1)n+ 1]

n(n− 1)(n−m)[n− (m− 1)]

=
2n− 3m+ 3

n(n−m)[n− (m− 1)]
>

n+ 3

2n(n−m)[n− (m− 1)]
> 0.
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This proves the claim. �

Claim 12 In profile group V, under both the local elevating and double elevating properties, at
P 5,1 = (P1, . . . , Pn−2, P̄n−1, P̄n), the random assignment ϕ(P 5,1) over a, b and c is specified below.

a b c

1, . . . , n− 2 : 1
n

1
n−2

n−4
n(n−2)

n− 1, n : 1
n

0 2
n

Proof : First, by Claim 8, sd-SP implies ϕn−1 a(P
5,1) = ϕn−1 a(P

3,1) = 1
n

and ϕn−1 c(P
5,1) +

ϕn−1 b(P
5,1) = ϕn−1 b(P

3,1) + ϕn−1 c(P
3,1) = 2

n
. Next, suppose ϕn−1 b(P

5,1) > 0. Since every
agent other than n − 1 and n prefers b to c, sd-Eff implies ϕic(P 5,1) = 0 for all i = 1, . . . , n − 2.
Consequently, ETE and feasibility imply ϕn−1 c(P

5,1) = 1
2
. Thus, we have 2

n
= ϕn−1 c(P

5,1) +

ϕn−1 b(P
5,1) > 1

2
. Contradiction! Therefore, ϕn−1 b(P

5,1) = 0, and hence ϕn−1 c(P
5,1) = 2

n
.

Moreover, ETE implies ϕna(P 5,1) = 1
n

, ϕnb(P 5,1) = 0 and ϕnc(P 5,1) = 2
n

. Last, by ETE and

feasibility, we have ϕia(P 5,1) =
1−2× 1

n

n−2
= 1

n
, ϕib(P 5,1) = 1

n−2
and ϕic(P 5,1) =

1−2× 2
n

n−2
= n−4

n(n−2)

for all i = 1, . . . , n− 2. �

Claim 13 In profile group V, under both the local elevating and double elevating properties, for
each m = 2, . . . , n̄, n̄+1, at P 5,m = (P̂1, . . . , P̂m−1, Pm, . . . , Pn−2, P̄n−1, P̄n), the random assign-
ment ϕ(P 5,m) over a and b is specified below

a b

1, . . . ,m− 1 : 0 γ(m)

m, . . . , n− 2 : 1
n−(m−1)

1−(m−1)γ(m)
n−(m+1)

n− 1, n : 1
n−(m−1)

0

where γ(m) = 2n4−2(2m+1)n3+2(m+1)2n2−2(m2+m+1)n+4
n(n−1)(n−2)[n−(m−1)](n−m)

.

Proof : The proof of this claim consists of three steps. In the first step, we specify the random
assignment over a and b for agents n− 1 and n. In the second step, we show that equation γ(m) is
decreasing from m = 2 to m = n̄+ 1, while the third step specifies the random assignment over a
and b for agents 1, . . . ,m− 1 and m, . . . , n− 2.

Step 1: Given 2 6 m 6 n̄ + 1, by Claim 9, sd-SP implies ϕn−1 a(P
5,m) = ϕn−1 a(P

3,m) =
1

n−(m−1)
and ϕn−1 c(P

5,m) +ϕn−1 b(P
5,m) = ϕn−1 b(P

3,m) +ϕn−1 c(P
3,m). By Claim 11, we know

ϕn−1 c(P
5,m)+ϕn−1 b(P

5,m) < 2
n−1

. Suppose ϕn−1 b(P
5,m) > 0. Since every agent other than n−1

and n prefers b to c, sd-Eff implies ϕic(P 5,m) = 0 for all i = 1, . . . , n−2. Then, ETE and feasibility
imply ϕn−1 c(P

5,m) = 1
2
. Consequently, we have 2

n−1
> ϕn−1 c(P

5,m) + ϕn−1 b(P
5,m) > 1

2
.

Contradiction! Therefore, ϕn−1 b(P
5,m) = 0. Then, by ETE, we have ϕna(P 5,m) = 1

n−(m−1)
and

ϕnb(P
5,m) = 0. In conclusion, for each m = 2, . . . , n̄, n̄+1, the random assignment ϕ(P 5,m) over

a and b for agents n− 1 and n is specified below.

a b

n− 1, n : 1
n−(m−1)

0
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Step 2: Given 3 6 m 6 n̄+ 1, we have

γ(m)− γ(m− 1) =
2n4 − 2(2m+ 1)n3 + 2(m+ 1)2n2 − 2(m2 +m+ 1)n+ 4

n(n− 1)(n− 2)[n− (m− 1)](n−m)

− 2n4 − 2(2m− 1)n3 + 2m2n2 − 2(m2 −m+ 1)n+ 4

n(n− 1)(n− 2)[n− (m− 2)][n− (m− 1)]

=
−2(n2 −mn+ 2)

n(n− 1)[n− (m− 2)][n− (m− 1)](n−m)
< 0.

Therefore, γ(m) is decreasing from m = 2 to m = n̄+ 1.

Step 3: For each m = 2, . . . , n̄, n̄ + 1, we specify the random assignment over a and b for agents
1, . . . ,m− 1 and m, . . . , n− 2.

First, by Claim 12, sd-SP implies ϕ1b(P
5,2)+ϕ1a(P

5,2) = ϕ1b(P
5,1)+ϕ1a(P

5,1) = 1
n

+ 1
n−2

=

γ(2). Next, since sd-Eff implies ϕ1a(P
5,2) = 0, we have ϕ1b(P

5,2) = γ(2). Then, by ETE

and feasibility, we have ϕia(P 5,2) =
1−2× 1

n−(2−1)

n−3
= 1

n−(2−1)
and ϕib(P 5,2) = 1−(2−1)×γ(2)

n−(2+1)
for all

i = 2, . . . , n− 2.
Next, we adopt an induction hypothesis: Given 2 < m 6 n̄+ 1, for all 2 6 l < m, the random

assignments ϕ(P 5,l) over a and b for all agents 1, . . . , l−1 and l, . . . , n−2 are specified as follows:

a b

1, . . . , l − 1 : 0 γ(l)

l, . . . , n− 2 : 1
n−(l−1)

1−(l−1)γ(l)
n−(l+1)

We specify the random assignmentϕ(P 5,m) over a and b for all agents 1, . . . ,m−1 andm, . . . , n− 2

to complete the verification of the induction hypothesis. First, by the induction hypothesis, sd-SP
implies

ϕm−1 b(P
5,m) + ϕm−1 a(P

5,m) =ϕm−1 a(P
5,m−1) + ϕm−1 b(P

5,m−1)

=
1

n− (m− 2)
+

1− (m− 2)× γ(m− 1)

n−m

=
1

n− (m− 2)
+

1− (m− 2)×
[

2n4−2(2m−1)n3+2m2n2−2(m2−m+1)n+4
n(n−1)(n−2)[n−(m−2)][n−(m−1)]

]
n−m

=
2n4 − 2(2m+ 1)n3 + 2(m+ 1)2n2 − 2(m2 +m+ 1)n+ 4

n(n− 1)(n− 2)[n− (m− 1)](n−m)

=γ(m).

Furthermore, ETE implies ϕib(P 5,m) + ϕia(P
5,m) = γ(m) for all i = 1, . . . ,m− 1.

Next, suppose that there exists i∗ ∈ {1, . . . ,m−1} such that ϕi∗a(P 5,m) > 0. Since every agent
other than 1, . . . ,m− 1 prefers a to b, sd-Eff implies ϕjb(P 5,m) = 0 for all j = m, . . . , n. Conse-
quently, ETE and feasibility imply ϕi∗b(P 5,m) = 1

m−1
. Hence, γ(m) = ϕi∗b(P

5,m)+ϕi∗a(P
5,m) >

1
m−1

. Since m > 2, by Step 2, we have

γ(m) 6 γ(3) =
2n4 − 14n3 + 32n2 − 26n+ 4

n(n− 1)(n− 2)(n− 2)(n− 3)
=

2

n− 1
− 2

n(n− 1)(n− 2)(n− 3)
<

1

m− 1
.
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Contradiction! Therefore, ϕia(P 5,m) = 0 for all i = 1, . . . ,m− 1. Hence, ϕib(P 5,m) = γ(m) for
all i = 1, . . . ,m− 1.

Last, by ETE and feasibility, we have ϕia(P 5,m) =
1−2× 1

n−(m−1)

n−(m+1)
= 1

n−(m−1)
and ϕib(P 5,m) =

1−(m−1)γ(m)
n−(m+1)

for all i = m, . . . , n− 2. In conclusion, the random assignment ϕ(P 5,m) over a and b
for all agents 1, . . . ,m− 1 and m, . . . , n− 2 is specified below.

a b

1, . . . ,m− 1 : 0 γ(m)

m, . . . , n− 2 : 1
n−(m−1)

1−(m−1)×γ(m)
n−(m+1)

This completes the verification of the induction hypothesis, and hence proves the claim. �

Claim 14 Under both the local elevating and double elevating properties, for each m = 2, . . . , n̄,
at P 6,m = (P̂1, . . . , P̂n−m, Pn−m+1, . . . , Pn−2, P̄n−1, P̄n), we have ϕia(P 6,m) + ϕib(P

6,m) = 2
n

for
all i ∈ I .

Proof : We first consider profile P 6,2 = (P̂1, . . . , P̂n−2, P̄n−1, P̄n), and showϕia(P
6,2)+ϕib(P

6,2) =
2
n

for all i ∈ I . By Claim 10, sd-SP implies (i) ϕn−1 a(P
6,2) = ϕn−1 a(P

4,2) = 2
n

, (ii) ϕn−1 c(P
6,2)+

ϕn−1 b(P
6,2) = ϕn−1 b(P

4,2) + ϕn−1 c(P
4,2) = 1

n
under the local elevating property, and (iii)

ϕn−1 c(P
6,2) + ϕn−1 b(P

6,2) = ϕn−1 b(P
4,2) + ϕn−1 c(P

4,2) = 2
n

under the double elevating prop-
erty. Next, suppose ϕn−1 b(P

6,2) > 0. Since every agent other than n−1 and n prefers b to c, sd-Eff
implies ϕic(P 6,2) = 0 for all i = 1, . . . , n− 2. Then, ETE and feasibility imply ϕn−1 c(P

6,2) = 1
2
.

Consequently, we have 1
n

= ϕn−1 c(P
6,2)+ϕn−1 b(P

6,2) > 1
2

under the local elevating property, and
2
n

= ϕn−1 c(P
6,2) + ϕn−1 b(P

6,2) > 1
2

under the double elevating property. Contradiction! There-
fore, ϕn−1 b(P

6,2) = 0. Thus, ϕn−1 a(P
6,2) + ϕn−1 b(P

6,2) = 2
n

and ϕna(P 6,2) + ϕnb(P
6,2) = 2

n

by ETE. Last, by ETE and feasibility, we have ϕia(P 6,2) + ϕib(P
6,2) =

2−2× 2
n

n−2
= 2

n
for all

i = 1, . . . , n− 2. In conclusion, ϕia(P 6,2) + ϕib(P
6,2) = 2

n
for all i ∈ I .

Next, we adopt an induction hypothesis: Given 2 < m 6 n̄, for all 2 6 l < m, ϕia(P 6,l) +

ϕib(P
6,l) = 2

n
for all i ∈ I . We show ϕia(P

6,m) + ϕib(P
6,m) = 2

n
for all i ∈ I .

By Claim 10, sd-SP implies (i) ϕn−1 a(P
6,m) = ϕn−1 a(P

4,m) = 2
n

, (ii) ϕn−1 c(P
6,m) +

ϕn−1 b(P
6,m) = ϕn−1 b(P

4,m) + ϕn−1 c(P
4,m) = 1

n
under the local elevating property, and (iii)

ϕn−1 c(P
6,m) + ϕn−1 b(P

6,m) = ϕn−1 b(P
4,m) + ϕn−1 c(P

4,m) = 2
n

under the double elevating
property. Next, suppose ϕn−1 b(P

6,m) > 0. Since every agent other than n − 1 and n prefers b
to c, sd-Eff implies ϕic(P 6,m) = 0 for all i = 1, . . . , n − 2. Then, ETE and feasibility imply
ϕn−1 c(P

6,m) = 1
2
. Consequently, we have 1

n
= ϕn−1 c(P

6,m) + ϕn−1 b(P
6,m) > 1

2
under the local

elevating property, and 2
n

= ϕn−1 c(P
6,m) + ϕn−1 b(P

6,m) > 1
2

under the double elevating prop-
erty. Contradiction! Therefore, ϕn−1 b(P

6,m) = 0. Thus, ϕn−1 a(P
6,m) + ϕn−1 b(P

6,m) = 2
n

and
ϕna(P

6,m) + ϕnb(P
6,m) = 2

n
by ETE.

Next, by sd-SP and the induction hypothesis, we have ϕn−m+1 a(P
6,m) + ϕn−m+1 b(P

6,m) =

ϕn−m+1 a(P
6,m−1) + ϕn−m+1 b(P

6,m−1) = 2
n

. Then, ETE implies ϕja(P 6,m) + ϕjb(P
6,m) = 2

n
for

all j = n − m + 1, . . . , n − 2. Last, by ETE and feasibility, we have ϕia(P 6,m) + ϕib(P
6,m) =

2−2× 2
n
−(m−2)× 2

n

n−m = 2
n

for all i = 1, . . . , n − m. This completes the verification of the induction
hypothesis, and hence proves the claim. �

Now, we induce the contradiction for the case of an odd number of agents. Let n > 5

be an odd integer. Thus, n̄ = n−1
2

. Notice that P 5,n̄+1 and P 6,n̄ differ exactly in preferences
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of agent n̄ + 1e, i.e., P 5,n̄+1
n̄+1 = Pi and P 6,n̄

n̄+1 = P̂i in Definition 3 or 4. Then, sd-SP implies
ϕn̄+1 a(P

5,n̄+1) + ϕn̄+1 b(P
5,n̄+1) = ϕn̄+1 a(P

6,n̄) + ϕn̄+1 b(P
6,n̄). Thus, by Claims 13 and 14, we

have

0 =
[
ϕn̄+1 a(P

5,n̄+1) + ϕn̄+1 b(P
5,n̄+1)

]
−
[
ϕn̄+1 a(P

6,n̄) + ϕn̄+1 b(P
6,n̄)
]

=

[
1

n− n̄
+

1− n̄× γ(n̄+ 1)

n− (n̄+ 2)

]
− 2

n
=

−4

(n− 3)(n− 2)(n− 1)n
. Contradiction!

Therefore, in the case of an odd number of agents, domain D satisfying the local elevating property
or the double elevating property admits no sd-SP, sd-Eff and ETE rule. This completes the proof
of Lemma 1.

C Proof of Lemma 2

Let D be a weakly connected domain violating both the local elevating and double elevating
properties.

Claim 15 Given distinct Pi, P ′i , P
′′
i ∈ D, if Pi ≈ P ′i and P ′i ≈ P ′′i , then Pi ≈ P ′′i .

To prove Claim 15, it suffices to show the following two symmetric statements:

(i) Given a, b ∈ A, if rk(Pi) = rk+1(P ′i ) = b and rk+1(Pi) = rk(P
′
i ) = a for some 1 6 k < n,

then we have either rk(P ′′i ) = a, rk+1(P ′′i ) = b and B(Pi, b) = B(P ′i , a) = B(P ′′i , a), or
rk(P

′′
i ) = b, rk+1(P ′′i ) = a and B(Pi, b) = B(P ′i , a) = B(P ′′i , b).

(ii) Given a, b ∈ A, if rk(P ′i ) = rk+1(P ′′i ) = b and rk+1(P ′i ) = rk(P
′′
i ) = a for some 1 6 k < n,

then we have either rk(Pi) = a, rk+1(Pi) = b and B(P ′i , b) = B(P ′′i , a) = B(Pi, a), or
rk(Pi) = b, rk+1(Pi) = a and B(P ′i , b) = B(P ′′i , a) = B(Pi, b).

Since both statements are symmetric, we focus on showing statement (i). Since Pi ≈ P ′i , we
can identify several pair(s) of objects {(bl, al) : l = 1, . . . , t} that are locally switched across Pi
and P ′i , i.e., there exist 1 6 k1 < k2 < · · · < kt < n such that bl = rkl(Pi) = rkl+1(P ′i ), al =

rkl+1(Pi) = rkl(P
′
i ), l = 1, . . . , t, and [x Pi y] ⇔ [x P ′i y] for all (x, y) /∈ {(bl, al) : l = 1, . . . , t}.

We first show that statement (i) holds for the pair (b1, a1).
Since a1 = rk1(P

′
i ) and b1 = rk1+1(P ′i ), P ′i ≈ P ′′i implies a1 ∈ {rk1−1(P ′′i ), rk1(P

′′
i ), rk1+1(P ′′i )}

and b1 ∈ {rk1(P ′′i ), rk1+1(P ′′i ), rk1+2(P ′′i )}. First, suppose a1 /∈ {rk1(P ′′i ), rk1+1(P ′′i )}. Thus,
a1 = rk1−1(P ′′i ). Then, by P ′i ≈ P ′′i , we know (i) rk1(P

′′
i ) = rk1−1(P ′i ) ≡ x, (ii) x P ′i ! a1 and

a1 P
′′
i ! x, and (iii) x 6= b1. Note that (b1, a1) is the first pair (the highest ranked pair) which is

locally switched across Pi and P ′i . Then, Pi ≈ P ′i implies rk1−1(Pi) = rk1−1(P ′i ) = x. We
next assert B(Pi, x) = B(P ′i , x) = B(P ′′i , a1). The first equality holds evidently. Suppose
B(P ′i , x) 6= B(P ′′i , a1). Since |B(P ′i , x)| = |B(P ′′i , a1)| = k1 − 2, B(P ′i , x) 6= B(P ′′i , a1) im-
plies that there exists y ∈ B(P ′′i , a1)\B(P ′i , x). Thus, y 6= a1, y P ′′i a1 and x P ′i y. Since
a1 P

′′
i x, we have y P ′′i x. Then, P ′i ≈ P ′′i implies x P ′i ! y and y P ′′i ! x, which contradict

the fact x P ′i ! a1 and a1 P
′′
i ! x. Therefore, B(Pi, x) = B(P ′i , x) = B(P ′′i , a1). Furthermore,

since b1 ∈ {rk1(P ′′i ), rk1+1(P ′′i ), rk1+2(P ′′i )} and rk1(P
′′
i ) = x 6= b1, we have two cases: (1)

rk1+1(P ′′i ) = b1 and (2) rk1+2(P ′′i ) = b1. In case (1), we have an instance of the local elevating
property specified in Table 4 below.
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k1 − 1 k1 k1 + 1

Pi: · · · · · · · · ·︸ ︷︷ ︸ � x � b1 � a1 � · · ·
B(Pi, x) = B(P ′i , x)

P ′i :
︷ ︸︸ ︷
· · · · · · · · ·︸ ︷︷ ︸ � x � a1 � b1 � · · ·

B(P ′i , x) = B(P ′′i , a1)

P ′′i :
︷ ︸︸ ︷
· · · · · · · · · � a1 � x � b1 � · · ·

Table 4: An instance of the local elevating property

In case (2), by P ′i ≈ P ′′i , we know rk1+2(P ′′i ) = rk1+1(P ′i ) = b1 and rk1+1(P ′′i ) = rk1+2(P ′i ) ≡ z.
Consequently, we have an instance of the double elevating property specified in Table 5 below.

k1 − 1 k1 k1 + 1 k1 + 2

Pi: · · · · · · · · ·︸ ︷︷ ︸ � x � b1 � a1 � · � · · ·
B(Pi, x) = B(P ′i , x)

P ′i :
︷ ︸︸ ︷
· · · · · · · · ·︸ ︷︷ ︸ � x � a1 � b1 � z � · · ·

B(P ′i , x) = B(P ′′i , a1)

P ′′i :
︷ ︸︸ ︷
· · · · · · · · · � a1 � x � z � b1 � · · ·

Table 5: An instance of the double elevating property

Hence, in each case, we induce a contradiction. Therefore, a1 ∈ {rk1(P ′′i ), rk1+1(P ′′i )}.
Next, suppose b1 /∈ {rk1(P ′′i ), rk1+1(P ′′i )}. Thus, b1 = rk1+2(P ′′i ). Then, by P ′i ≈ P ′′i , we know

rk1+1(P ′′i ) = rk1+2(P ′i ) ≡ x, and hence x 6= a1. Furthermore, since a1 ∈ {rk1(P ′′i ), rk1+1(P ′′i )},
we have rk1(P

′′
i ) = a1. Thus, a1 = rk1(P

′
i ) = rk1(P

′′
i ). We next assert B(Pi, b1) = B(P ′i , a1) =

B(P ′′i , a1). The first equality holds evidently. SupposeB(P ′i , a1) 6= B(P ′′i , a1). Since |B(P ′i , a1)| =
|B(P ′′i , a1)| = k1 − 1, B(P ′i , a1) 6= B(P ′′i , a1) implies that there exists y ∈ B(P ′′i , a1)\B(P ′i , a1).
Thus, y P ′′i a1 and a1 P

′
i y which by P ′i ≈ P ′′i imply a1 P

′
i ! y and y P ′′i ! a1. This contradicts the

fact a1 = rk1(P
′
i ) = rk1(P

′′
i ). Therefore, B(Pi, b1) = B(P ′i , a1) = B(P ′′i , a1). Furthermore, since

Pi ≈ P ′i and rk1+1(Pi) = a1 6= x, we have two cases: (1) rk1+2(Pi) = x and (2) rk1+3(Pi) = x. In
case (1), we have an instance of the local elevating property specified in Table 6 below.

k1 k1 + 1 k1 + 2

P ′′i : · · · · · · · · ·︸ ︷︷ ︸ � a1 � x � b1 � · · ·
B(P ′′i , a1) = B(P ′i , a1)

P ′i :
︷ ︸︸ ︷
· · · · · · · · ·︸ ︷︷ ︸ � a1 � b1 � x � · · ·

B(P ′i , a1) = B(Pi, b1)

Pi:
︷ ︸︸ ︷
· · · · · · · · · � b1 � a1 � x � · · ·

Table 6: An instance of the local elevating property

In case (2), since Pi ≈ P ′i , we know rk1+2(P ′i ) = rk1+3(Pi) = x and rk1+3(P ′i ) = rk1+2(Pi) ≡ z.
Consequently, we have an instance of the double elevating property specified in Table 7 below.

k1 k1 + 1 k1 + 2 k1 + 3

P ′′i : · · · · · · · · ·︸ ︷︷ ︸ � a1 � x � b1 � · � · · ·
B(P ′′i , a1) = B(P ′i , a1)

P ′i :
︷ ︸︸ ︷
· · · · · · · · ·︸ ︷︷ ︸ � a1 � b1 � x � z � · · ·

B(P ′i , a1) = B(Pi, b1)

Pi:
︷ ︸︸ ︷
· · · · · · · · · � b1 � a1 � z � x � · · ·
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Table 7: An instance of the double elevating property

Hence, in each case, we induce a contradiction. Therefore, b1 ∈ {rk1(P ′′i ), rk1+1(P ′′i )}. In conclu-
sion, we have either rk1(P

′′
i ) = a1 and rk1+1(P ′′i ) = b1, or rk1(P

′′
i ) = b1 and rk1+1(P ′′i ) = a1.

Last, we show [rk1(P
′′
i ) = a1]⇒ [B(Pi, b1) = B(P ′i , a1) = B(P ′′i , a1)], and [rk1(P

′′
i ) = b1]⇒

[B(Pi, b1) = B(P ′i , a1) = B(P ′′i , b1)]. It is evident that B(Pi, b1) = B(P ′i , a1).
We first assume rk1(P

′′
i ) = a1. Suppose B(P ′i , a1) 6= B(P ′′i , a1). Since |B(P ′i , a1)| =

|B(P ′′i , a1)| = k1 − 1, B(P ′i , a1) 6= B(P ′′i , a1) implies that there exists y ∈ B(P ′′i , a1)\B(P ′i , a1).
Consequently, we have y P ′′i a1 and a1 P

′
i y which by P ′i ≈ P ′′i imply a1 P

′
i ! y and y P ′′i ! a1. This

contradicts the fact rk1(P
′
i ) = rk1(P

′′
i ) = a1. Therefore, B(Pi, b1) = B(P ′i , a1) = B(P ′′i , a1).

We next assume rk1(P
′′
i ) = b1. Thus, a1 P

′
i ! b1 and b1 P

′′
i ! a1. Suppose B(P ′i , a1) 6= B(P ′′i , b1).

Since |B(P ′i , a1)| = |B(P ′′i , b1)| = k1 − 1, B(P ′i , a1) 6= B(P ′′i , b1) implies that there exists y ∈
B(P ′′i , b1)\B(P ′i , a1). Consequently, we have y 6= b1, y P ′′i b1 and a1 P

′
i y. Furthermore, since

b1 P
′′
i a1, we have y P ′′i a1. Consequently, P ′i ≈ P ′′i implies a1 P

′
i ! y and y P ′′i ! a1. This contradicts

the fact a1 P
′
i ! b1 and b1 P

′′
i ! a1. Therefore, B(Pi, b1) = B(P ′i , a1) = B(P ′′i , b1). This completes

the verification of statement (i) for the pair (b1, a1).

Next, we provide an induction hypothesis: Given 1 < m 6 t, statement (i) holds for all pairs
(b1, a1), . . . , (bm−1, am−1). We show that statement (i) holds for (bm, am).

Since am = rkm(P ′i ) and bm = rkm+1(P ′i ), P ′i ≈ P ′′i implies a1 ∈ {rkm−1(P ′′i ), rkm(P ′′i ), rkm+1(P ′′i )}
and b1 ∈ {rkm(P ′′i ), rkm+1(P ′′i ), rkm+2(P ′′i )}. Suppose am /∈ {rkm(P ′′i ), rkm+1(P ′′i )}. Thus, am =

rkm−1(P ′′i ). Then, by P ′i ≈ P ′′i , we know (i) rkm(P ′′i ) = rkm−1(P ′i ) ≡ x, (ii) x P ′i ! am and
am P ′′i ! x, and (iii) x 6= bm. Since b1 ∈ {rkm(P ′′i ), rkm+1(P ′′i ), rkm+2(P ′′i )} and x = rkm(P ′′i ),
we know b1 ∈ {rkm+1(P ′′i ), rkm+2(P ′′i )}. We next assert rkm−1(Pi) = x. Suppose not, i.e.,
rkm−1(Pi) ≡ y 6= x. Since rkm(Pi) = bm 6= x, Pi ≈ P ′i implies rkm−2(Pi) = rkm−1(P ′i ) = x

and rkm−1(Pi) = rkm−2(P ′i ) = y. Then, it must be the case (bm−1, am−1) = (x, y), and the
induction hypothesis implies x ∈ {rkm−2(P ′′i ), rkm−1(P ′′i )} which contradicts rkm(P ′′i ) = x.
Therefore, rkm−1(Pi) = x. Then, symmetric to the argument related to a1 above, we have
B(Pi, x) = B(P ′i , x) = B(P ′′i , am), and induce an instance of the local elevating property if
rkm+1(P ′′i ) = bm, and an instance of the double elevating property if rkm+2(P ′′i ) = bm, which both
contradict the hypothesis of Lemma 2. Hence, am ∈ {rkm(P ′′i ), rkm+1(P ′′i )}.

Next, suppose bm /∈ {rkm(P ′′i ), rkm+1(P ′′i )}. Thus, bm = rkm+2(P ′′i ). Then, by P ′i ≈ P ′′i , we
know rkm+1(P ′′i ) = rkm+2(P ′i ) ≡ x, and hence x 6= am. Since am ∈ {rkm(P ′′i ), rkm+1(P ′′i )} and
x = rkm+1(P ′′i ), we have rkm(P ′′i ) = am. Moreover, since Pi ≈ P ′i and rkm+1(Pi) = am 6= x,
we know x ∈ {rkm+2(Pi), rkm+3(Pi)}. Then, symmetric to the argument related to b1 above, we
have B(Pi, bm) = B(P ′i , am) = B(P ′′i , am), and induce an instance of the local elevating property
if rkm+2(Pi) = x, and an instance of the double elevating property if rkm+3(Pi) = x, which both
contradict the hypothesis of Lemma 2. Therefore, bm ∈ {rkm(P ′′i ), rkm+1(P ′′i )}. In conclusion, we
have either either rkm(P ′′i ) = am and rkm+1(P ′′i ) = bm, or rkm(P ′′i ) = bm and rkm+1(P ′′i ) = am.

Last, symmetric to the argument related to (b1, a1) above, we assert [rkm(P ′′i ) = am] ⇒
[B(Pi, bm) = B(P ′i , am) = B(P ′′i , am)], and [rkm(P ′′i ) = bm] ⇒ [B(Pi, bm) = B(P ′i , am) =

B(P ′′i , bm)]. This completes the verification of the induction hypothesis. Hence, we prove state-
ment (i) and Claim 15.

Last, since domain D is weakly connected, we know that every pair of distinct preferences is
connected via a path. Then, Claim 15 immediately implies that all preferences of D are pairwise
neighbors. Consequently, for an arbitrary pair of distinct preferences Pi, P ′i ∈ D, if two objects
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are oppositely ranked across Pi and P ′i , say a Pi b and b P ′i a, they must be consecutively ranked
in both Pi and P ′i , i.e., a = rk(Pi) = rk+1(P ′i ) and b = rk+1(Pi) = rk(P

′
i ) for some 1 6 k < n.

Furthermore, by statements (i) and (ii) in the proof of Claim 15, we know that a and b also occupy
the k-th and (k + 1)-th ranking positions in every other preference of D. Therefore, D must be a
restricted tier domain. This completes the proof of Lemma 2.

D Details related to Remark 6

Let domain D satisfy the local elevating property (respectively, the double elevating property).
We show that D admits no sd-SP, sd-Eff and sd-EF rule.

Assume w.l.o.g. that D includes preferences P̄i, Pi and P̂i of Table 1 (respectively, Table 2).
Suppose that there exists an sd-SP, sd-Eff and sd-EF rule ϕ : Dn → L. We construct two prefer-
ence profiles which only consist of preferences P̄i, Pi and P̂i of Table 1 (respectively, Table 2):

• P 1 ≡ (P1, P2, . . . , Pn−1, P̄n): Agent n reports P̄i, while everyone else reports Pi.

• P 2 ≡ (P̂1, P2, . . . , Pn−1, P̄n): Agent n reports P̄i, agent 1 reports P̂i, while everyone else
reports Pi.

Step 1: For notational convenience, let B ≡ B(P̄i, a) = B(Pi, a) = B(P̂i, b). Evidently, sd-EF
and feasibility imply ϕiB(P 1) = k−1

n
and ϕiB(P 2) = k−1

n
for all i ∈ I . Then, by sd-SP, we have

ϕ1a(P
1) + ϕ1b(P

1) = ϕ1b(P
2) + ϕ1a(P

2).

Step 2: We specify the random assignments ϕ(P 1) and ϕ(P 2) over a and b by sd-Eff and sd-EF
in the following two claims.

Claim 16 The random assignment ϕ(P 1) over a and b is specified below.

a b

1, · · · , n− 1 : 1
n

1
n−1

n : 1
n

0

First, sd-EF and feasibility imply ϕia(P 1) = 1
n

for all i ∈ I . Next, sd-Eff implies ϕnb(P 1) = 0.
Then, by sd-EF and feasibility, we have ϕib(P 1) = 1

n−1
for all i = 1, . . . , n − 1. This completes

the verification of the claim.

Claim 17 The random assignment ϕ(P 2) over a and b is specified below.

a b

1 : 0 2n−3
(n−1)2

2, · · · , n− 1 : 1
n−1

n−2
(n−1)2

n : 1
n−1

0

First, sd-Eff implies ϕ1a(P
2) = 0. Then, by sd-EF and feasibility, we have ϕia(P 2) = 1

n−1
for

all i = 2, · · · , n. Second, sd-Eff implies ϕnb(P 2) = 0. Then, feasibility implies ϕ1b(P
2) +∑n−1

i=2 ϕib(P
2) = 1. Last, since sd-EF implies ϕ1a(P

2) +ϕ1b(P
2) = ϕia(P

2) +ϕib(P
2) for all i =

2, · · · , n− 1, and ϕib(P 2) = ϕjb(P
2) for all i, j ∈ {2, · · · , n− 1}, we calculate ϕib(P 2) = n−2

(n−1)2

for all i = 2, · · · , n− 1, and ϕ1b(P
2) = 2n−3

(n−1)2
. This completes the verification of the claim.
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Last, according to Claims 16 and 17, we have

ϕ1a(P
1) + ϕ1b(P

1) =
1

n
+

1

n− 1
>

2n− 3

(n− 1)2
= ϕ1b(P

2) + ϕ1a(P
2).

This contradicts Step 1. Therefore, D admits no sd-SP, sd-Eff and sd-EF rule.

E Proof of Lemma 3

Suppose that D(ΩK) satisfies the local elevating property (respectively, the double elevating
property), including preferences P̄i, Pi and P̂i of Table 1 (respectively, Table 2). Recall the algo-
rithm. According to objects a, b and c in Table 1 (respectively, Table 2), there must exist a unique
step 1 6 k 6 K such that (i) a, b, c are included in a block At ∈ Ak−1, and (ii) At breaks into A1

t

and A2
t such that two objects of {a, b, c} and the third one are separated in A1

t and A2
t . We assume

w.l.o.g. that two objects of {a, b, c} are included in A1
t , and the third one is included in A2

t . Note
that D(ΩK) ⊆ D(ΩK−1) ⊆ · · · ⊆ D(Ωk), and in every preference of D(Ωk), either all objects of
A1
t rank above all objects ofA2

t , or all objects ofA2
t rank above all objects ofA1

t . Consequently, we
have [a, b ∈ A1

t ]⇒ [P̄i /∈ D(ΩK)], [a, c ∈ A1
t ]⇒ [Pi /∈ D(ΩK)], and [b, c ∈ A1

t ]⇒ [P̂i /∈ D(ΩK)],
which contradict the hypothesis of Lemma 3. Therefore, D(ΩK) avoids both the local elevating
and double elevating properties.

F Proof of Proposition 1

We show that D(ΩK) is equivalent to a sequentially dichotomous domain of Liu (2019). Then,
by Theorem 1 of Liu (2019), we know that the PS rule is sd-SP on D(ΩK) which hence completes
the verification of Proposition 1.

We first introduce two new notions which are used in the definition of a sequentially dichoto-
mous domain. First, a sequence of partitions (Ak)

T
k=0 is called a dichotomous path if it satisfies

the following two conditions:

1. A0 = {A} and AT =
{
{a} : a ∈ A

}
.

2. For each 1 6 k 6 T , some At ∈ Ak−1 breaks into nonempty A1
t and A2

t , and Ak =

{A1
t , A

2
t} ∪Ak−1\{At}.

Next, given a partition Ak = {A1, . . . , At}, a preference Pi respects Ak if for distinct Ap, Aq ∈
Ak, either all objects of Ap rank above all objects of Aq in Pi, or vice versa, i.e., either a Pi b for
all a ∈ Ap and b ∈ Aq, or b Pi a for all a ∈ Ap and b ∈ Aq. Now, we introduce the definition of
a sequentially dichotomous domain. A domain D is a sequentially dichotomous domain if there
exists a dichotomous path (Ak)

T
k=0 such that we have

[
Pi ∈ D

]
⇔ [Pi respects all A0, . . . ,AT ].

Now, we start to prove Proposition 1. At each step of the algorithm, we generate a partition.
Thus, we have A0 = {A} and A1, . . . ,AK . At the termination step K, assume w.l.o.g. that
AK = {A1, . . . , At, At+1, . . . , AK+1} where |Ak| = 2 for all k = 1, . . . , t, and |As| = 1 for all
s = t+ 1, . . . , K + 1. Moreover, from k = 1 to k = t, we continue to consecutively break Ak into
two singleton subsets, and dichotomously refine all restricted tier structures of ΩK accordingly.
Thus, for each k = 1, . . . , t, we have partition AK+k which replaces Ak ∈ AK+k−1 by the two
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corresponding singleton subsets, and the set of tier structures ΩK+k which collects the dichoto-
mous refinements of each tier structure in ΩK+k−1. Thus, AK+t =

{
{a} : a ∈ A

}
, and we have

a dichotomous path
(
A0,A1, . . . ,AK ,AK+1, . . . ,AK+t

)
. Now, to show that D(ΩK) is equiva-

lent to the corresponding sequentially dichotomous domain, it suffices to show the following two
conditions:

(i) Given Pi ∈ D(ΩK) and 0 6 k 6 K + t, Pi respects Ak.

(ii) Given Pi /∈ D(ΩK), there exists 0 6 k 6 K + t such that Pi does not respect Ak.

Given Pi ∈ D(ΩK), we know Pi ∈ D(Ωk) for all k = 0, 1, . . . , K. Next, given 0 6 k 6 K, we
know Pi ∈ D(P) for some P ∈ Ωk. Then, Definition 2 implies that Pi respects Ak. Therefore, Pi
respects A0,A1, . . . ,AK . Furthermore, since blocks A1, . . . , At of AK consecutively break into
two singleton subsets from AK to AK+t, it is evident that Pi continues to respect AK+k for all
k = 1, . . . , t. This completes the verification of condition (i).

Given Pi /∈ D(ΩK), since Pi ∈ P ≡ D(Ω0), there exists 0 < k 6 K such that Pi ∈ D(Ωk−1)

and Pi /∈ D(Ωk). Accordingly, let Pi ∈ D(P) for some P ∈ Ωk−1. Thus, Pi respects Ak−1.
Furthermore, assume that block As ∈ Ak−1 breaks into A1

s and A2
s, and let P and P be the

corresponding dichotomous refinements of P in Step k of the algorithm. Since 0 < k 6 K,
it is true that |As| > 3, and either |A1

s| > 2 or |A2
s| > 2. Since Pi /∈ D(Ωk), it is true that

Pi /∈ D(P) ∪ D(P). Then, there exist a, b ∈ A1
s and c ∈ A2

s, or a, b ∈ A2
s and c ∈ A1

s such
that a Pi c and c Pi b. Consequently, Pi does not respect Ak. This completes the verification of
condition (ii), and hence proves Proposition 1.
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PYCIA, M. AND M. U. ÜNVER (2017): “Incentive compatible allocation and exchange of discrete

resources,” Theoretical Economics, 12: 287–29.
SAPORITI, A. (2009): “Strategy-proofness and single-crossing,” Theoretical Economics, 4: 127–

163.
SATO, S. (2013): “A sufficient condition for the equivalence of strategy-proofness and nonmanipu-

lability by preferences adjacent to the sincere one,” Journal of Economic Theory, 148: 259–278.
SEN, A. K. (1966): “A possibility theorem on majority decisions,” Econometrica, 491–499.
SHAPLEY, L. AND H. SCARF (1974): “On cores and indivisibility,” Journal of Mathematical

Economics, 1: 23–37.
SVENSSON, L.-G. (1999): “Strategy-proof allocation of indivisible goods,” Social Choice and

Welfare, 16: 557–567.
ZHOU, Y. AND S. SERIZAWA (2018): “Strategy-proofness and efficiency for non-quasi-linear

and common-tiered-object preferences: Characterization of minimum price rule,” Games and
Economic Behavior, 109: 327-363.

37

http://ink.library.smu.edu.sg/soe_research/1915/
http://ink.library.smu.edu.sg/soe_research/1915/

	Introduction
	Model
	The Probabilistic Serial Rule
	Weakly Connected Domains

	Main Results
	An Extension: Beyond Weak Connectedness
	Conclusion
	Details related to Remark 1
	Proof of Lemma 1
	Proof of Lemma 2
	Details related to Remark 6
	Proof of Lemma 3
	Proof of Proposition 1

