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Abstract

We study two incentive compatibility notions of ordinal mechanisms: strategy-proofness
and a new notion of local strategy-proofness, called block-adjacent strategy-proofness,
which requires no gain by a flip of two adjacent blocks. A condition on the preference
domain called path-nestedness is identified as sufficient for the equivalence between these
two notions.
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1 Introduction

Ordinal mechanisms collect agents’ ordinal preferences on a finite set of alternatives and
specify an outcome. Examples include the voting mechanisms (Gibbard, 1973; Satterthwaite,
1975; Gibbard, 1977), the assignment mechanisms (Pápai, 2000; Bogomolnaia and Moulin,
2001), etc. A central property we want an ordinal mechanism to satisfy is that no one gains
by misrepresenting her true preference, called strategy-proofness. This property is in general
difficult to verify since its verification requires comparisons between the outcomes induced by
every pair of preferences, given an arbitrary profile of other agents’ preferences. To simplify
the task, a notion of local strategy-proofness was studied, requiring that no one gains by a flip
of two adjacently ranked alternatives. An equivalence between these two notions is surely inter-
esting, as it dramatically simplifies the verification of strategy-proofness. Apparently, whether
such an equivalence holds depends on the preference domain on which the mechanisms are de-
fined. Sato (2013) focused on deterministic mechanisms and proved that, if a domain satisfies
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connectedness and non-restoration, the equivalence holds. Cho (2016) found that these condi-
tions remain sufficient for random mechanisms.1 A domain is connected if, from an arbitrary
preference to another, there is a sequence of preferences in the domain such that every pair of
contiguous preferences are different only in a flip between two adjacently ranked alternatives.
Moreover, a connected domain satisfies non-restoration if no pair of alternatives are flipped
more than once along this sequence. These equivalence results, however, cannot be invoked
when connectedness or non-restoration is violated. In particular, many interesting domains are
not connected. In response to this fact, we introduce a new local strategy-proofness and prove
a new equivalence, which is presumably useful when either one of the two conditions is vio-
lated. Liu (2019) studied the random assignment problems and proved that, for a particular class
of domains, the mechanism introduced by Bogomolnaia and Moulin (2001) satisfies the local
strategy-proofness defined in the current note, which hence implies global strategy-proofness.
Therefore, Liu (2019) can be seen as an application of the equivalence in this note.

2 Preliminaries

Let A be a finite set of alternatives with |A| = m > 2.2 Let P be the collection of all linear
orders on A, i.e., complete, transitive, and antisymmetric binary relations on A. We call these
linear orders preferences and P the universal domain. Besides, a preference such that a P b and
b P c is usually denoted abc. For a specific mechanism design problem, the set of admissible
preferences is called the domain and denoted D ⊂ P. Given P ∈ P, rk(P ) denotes the k-th
ranked alternative according to P .

An ordinal mechanism is a mapping ϕ : D→ ∆(A), where ∆(A) denotes the set of lotter-
ies on A. The preferences on alternatives are extended to preferences on lotteries by stochastic
dominance. In particular, given P ∈ D and λ, λ′ ∈ ∆(A), λ stochastically dominates λ′ ac-
cording to P , denoted λ P sd λ′, if

∑k
l=1 λrl(P ) >

∑k
l=1 λ

′
rl(P ) for all 1 6 k 6 n.3 An ordinal

mechanism ϕ : D→ ∆(A) is sd-strategy-proof (sd-SP) if for all P, P ′ ∈ D, ϕ(P ) P sd ϕ(P ′).
An ordinal mechanism is deterministic if it selects only degenerate lotteries and in this case, sd-
strategy-proofness is called strategy-proofness (SP).4

1Carroll (2012) also studied the equivalence between local and global strategy-proofness. However, Carroll
(2012) studied specific economic settings and investigated not only ordinal mechanisms but also cardinal mech-
anisms. Recently, Kumar et al. (2019) studied deterministic voting mechanisms, introduced a general notion of
local strategy-proofness, and provided a condition on preference domains called “lower contour set no-restoration
property”, which is shown sufficient and necessary for the equivalence between strategy-proofness and their local
strategy-proofness. However, this equivalence is invalid for random mechanisms, as noted by Theorem 2 in their
paper.

2If |A| = 1, the mechanism is constant and hence strategy-proofness is trivially satisfied.
3Equivalently, λ P sd λ′ iff, ∀ u representing P , Eu(λ) > Eu(λ

′), where Eu(λ) denotes the expected utility
delivered by λ given u.

4Mechanism design problems usually involve multiple agents. However, the properties we study in this note
concern only individual agent’s incentive when she decides which preference to report, given other agents’ re-
ported preferences. Therefore, for simplicity, the mechanism defined here collects only one agent’s preference and
specifies one outcome for this agent. However, our results straightforwardly extend to multi-agent problems.
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3 Results

We introduce first the local strategy-proofness we study. We say a subset of alternatives
clusters in a preference if they are adjacently ranked. Formally, B ⊂ A clusters in P ∈ D if
∀a, b ∈ B, @ x ∈ A\B such that a P x P b or b P x P a. We call these subsets blocks.

Definition 1. Two preferences P, P ′ ∈ D are block-adjacent if there are two nonempty and
disjoint subsets A1, A2 ⊂ A such that

1. A1, A2, and A1 ∪ A2 cluster in P and P ′.

2. ∀a, b ∈ A such that a ∈ A1 and b ∈ A2, a P ′ b⇔ b P a.

3. ∀a, b ∈ A such that either a 6∈ A1 or b 6∈ A2, a P ′ b⇔ a P b.

Note that two preferences are either not block-adjacent or block-adjacent with respect to a
unique pair of blocks. Note also that the adjacencies used by Sato (2013) and Cho (2016) are
special cases of block-adjacencies where the flipped blocks are singletons. We denote the blocks
flipped between P and P ′ as FB1(P, P

′) and FB2(P, P
′), where FB refers to ”flipped blocks.”

An ordinal mechanism ϕ : D→ ∆(A) is block-adjacent sd-strategy-proof (BA-sd-SP) if for
all block-adjacent P, P ′ ∈ D, ϕ(P ) P sd ϕ(P ′). When the mechanism is deterministic, this
notion is called block-adjacent strategy-proof (BA-SP). The local strategy-proofness studied by
Sato (2013) and Cho (2016) are called respectively “AM strategy-proofness” and “sd-adjacent
strategy-proofness”, where “AM” stands for adjacent manipulation. Since block-adjacency is
a generalization of the adjacency notion they use, BA-SP is stronger than the AM strategy-
proofness of Sato (2013) and BA-sd-SP is stronger than the sd-adjacent strategy-proofness of
Cho (2016).

We proceed to introduce two conditions on preference domains. First, a preference domain
D is block-connected if for any two preferences P, P ′ ∈ D, there exist P1, · · · , PM ∈ D such
that (i) P1 = P , (ii) PM = P ′, and (iii) ∀ m = 1, · · · ,M − 1, Pm and Pm+1 are block-
adjacent. We call this sequence a path from P to P ′. To introduce the second condition, let
A1, A2 and A3, A4 be two pairs of nonempty and disjoint subsets, i.e., ∅ 6= A1, A2, A3, A4 ⊂ A,
A1 ∩ A2 = ∅, and A3 ∩ A4 = ∅. We say A1, A2 are nested in or disjoint from A3, A4, denoted
{A1, A2} v {A3, A4}, if either A1∪A2 ⊂ A3, or A1∪A2 ⊂ A4, or (A1∪A2)∩ (A3∪A4) = ∅.
A path P1, · · · , PM is nested if the blocks flipped later are nested in or disjoint from the blocks
flipped earlier. Formally, ∀ 1 6 m′ < m 6 M − 1, {FB1(Pm, Pm+1), FB2(Pm, Pm+1)} v
{FB1(Pm′ , Pm′+1), FB2(Pm′ , Pm′+1)}. Finally, A domain D is path-nested if, for all distinct
P, P ′ ∈ D, there is a nested path from P to P ′. An example is in Figure 1.

We are now ready to present our main result below.

Theorem 1. BA-sd-SP is equivalent to sd-SP on path-nested domains.

We close this section by highlighting three points. First, for deterministic mechanisms,
a corollary of Theorem 1 is that BA-SP is equivalent to SP on path-nested domains. Second,
block-connectedness is necessary for the equivalence, while path-nestedness is not. Third, there
is no logical relation between path-nestedness and non-restoration of Sato (2013). Details can
be found in the working paper version (Liu, 2017).
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4 Examples and Discussions

4.1 A Path-Nested but not Connected Domain

Figure 1 below illustrates a sequentially dichotomous domain (Liu, 2019), where the bold-
faced sequences are preferences and the dotted lines indicate block-adjacencies. A set of prefer-
ences is a sequentially dichotomous domain, if there is a fixed sequence of attributes satisfying
the following requirements. First, the set of alternatives can be partitioned into two subsets, one
containing the alternatives possessing the first attribute and the other containing the alternatives
not. It is hence required that, for every preference in the domain, the alternatives in one subset
are all better than the ones in the other subset. Second, within each subset in the first step, the
alternatives can be partitioned further into two smaller subsets according to the second attribute
and it is still required that the alternatives in one subset are all better than the ones in the other. It
proceeds until no partition can be made. One can easily verify that the domain in Figure 1 is not
connected. Hence, the equivalence results by Sato (2013) and Cho (2016) cannot be invoked.
However, such a domain is path-nested and hence Theorem 1 applies.

acdb

cadb

dcab

dacb bcad

bacd

bdca

bdac

d-ac

a-c

a-c

d-ac

d-ac

a-c

a-c

d-ac

b-acd

b-acd

b-acd

b-acd

Figure 1: A Path-Nested Domain.

4.2 A Path-Nested and Connected Domain with Restoration

The domain in Figure 2 has been discussed by Sato (2013). The solid lines illustrate adja-
cencies, indicating that this domain satisfies connectedness but violates non-restoration. Block-
adjacency allows us to draw two more links, indicating path-nestedness. Theorem 1 then ap-
plies.

xyvwz yxvwz yxvzw yxzvw xyzvwx-y z-w z-v x-y

z-vw

z-vw

Figure 2: A Connected Domain that Violates non-Restoration
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4.3 Regular Domains

We start with an observation below. Let B ⊂ A be an arbitrary subset of alternatives with
|B| > 2. A dichotomous partition of B refers to a pair of subsets ∅ 6= B1, B2 ⊂ B such that
B1 ∪B2 = B and B1 ∩B2 = ∅.

Proposition 1. Let B ⊂ A be such that |B| > 2 and P, P ′ ∈ P distinct. Then, exactly one of
the following three happens.

1. ∃ a dichotomous partition B1, B2 ⊂ B s.t. ∀ b1 ∈ B1 and b2 ∈ B2, b1 P b2 and b1 P ′ b2.

2. ∃ a dichotomous partition B1, B2 ⊂ B s.t. ∀ b1 ∈ B1 and b2 ∈ B2, b1 P b2 and b2 P ′ b1.

3. ∃ distinct a, b, c, d ∈ B s.t. a P b P c P d and [b P ′ d P ′ a P ′ c or c P ′ a P ′ d P ′ b].

Recall that the nested paths involve essentially block flips, meaning that the third case above
potentially prevents a domain to be path-nested. Hence, we say a domain D is irregular if case
3 happens, i.e., there exist four alternatives and two preferences showing the pattern in the third
bullet. A domain is regular if it is not irregular. Then we have the following.

Proposition 2. Any path-nested domain is regular.

The converse of the above proposition is not true since path-nestedness requires some sort of
richness, which is not provided by regularity. For instance, if bcad is removed from the domain
in Figure 1, regularity is satisfied but path-nestedness is violated. However, a domain is path-
nested if it is maximally regular, in the sense that it becomes irregular whenever an additional
preference is added.

Proposition 3. Any maximally regular domain is path-nested.

5 Proofs

5.1 Proof of Theorem 1

The necessity part is evident by definition. We prove the sufficiency. Let D be a path-nested
domain and ϕ : D → ∆(A) a BA-sd-SP mechanism. What we need to show is, ∀P, P ′ ∈ D,
ϕ(P ) P sd ϕ(P ′). Fixing an arbitrary pair P, P ′ ∈ D, let P = P1, · · · , PM = P ′ be an arbitrary
nested path. Then, the transitivity of P sd

1 implies that it suffices to show, ∀m = 1, · · · ,M − 1,
ϕ(Pm) P sd

1 ϕ(Pm+1). Note that ϕ(P1) P sd
1 ϕ(P2) is implied directly by BA-sd-SP. Fixing

m = 2, · · · ,M − 1, ϕ(Pm) P sd
1 ϕ(Pm+1) is implied by the following induction.

Initial Statement: ϕ(Pm) P sd
m ϕ(Pm+1) by BA-sd-SP.

Induction Statement: ∀2 6 α 6 m, ϕ(Pm) P sd
α ϕ(Pm+1)⇒ ϕ(Pm) P sd

α−1 ϕ(Pm+1).
To simplify notations, we define the following.
A1 ≡ FB1(Pα−1, Pα) B1 ≡ FB1(Pα, Pα+1) C1 ≡ FB1(Pm, Pm+1)

A2 ≡ FB2(Pα−1, Pα) B2 ≡ FB2(Pα, Pα+1) C2 ≡ FB2(Pm, Pm+1)

To prove the induction statement, we need to consider three cases: (1) B1 ∪ B2 ⊂ A1,
(2) B1 ∪ B2 ⊂ A2, and (3) [B1 ∪ B2] ∩ [A1 ∪ A2] = ∅. We prove the statement for case 1
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illustrated below, where X and Y denote the common upper and lower contour sets. The same
logic applies to other cases.

Pα−1 : X � · · · � B1 � B2 � · · ·︸ ︷︷ ︸
A1

� A2 � Y

Pα : X � A2 � · · · � B1 � B2 � · · ·︸ ︷︷ ︸
A1

� Y

Given ϕ(Pm) P sd
m ϕ(Pm+1) and ϕ(Pm+1) P sd

m+1 ϕ(Pm), ∀ x 6∈ C1 ∪ C2, ϕx(Pm) =

ϕx(Pm+1). Put otherwise, ϕ(Pm) and ϕ(Pm+1) can be different only on the probabilities of
alternatives in C1 ∪C2. Note also that the path-nestedness implies that C1 ∪C2 clusters in both
Pα−1 and Pα. Moreover, Pα−1 and Pα differ only in a flip between A1 and A2. In particular, the
ranking of the alternatives in C1 ∪ C2 is the same. Given these, one can verify by the definition
of stochastic dominance that ϕ(Pm) P sd

α ϕ(Pm+1) implies ϕ(Pm) P sd
α−1 ϕ(Pm+1).

5.2 Proof of Proposition 1

If |B| = 2, it is trivial that either case 1 or 2 happens. If |B| = 3, without loss of generality,
let P be abc. Then P ′ can be one of the following five: acb, bac, bca, cab, and cba. It is easy to
check that either case 1 or 2 happens. If |B| > 4, we prove that the negation of case 3 implies
either case 1 or 2. Pick arbitrary a, b, c, d ∈ B such that a P b P c P d. Then the negation of
case 3 implies neither b P ′ d P ′ a P ′ c nor c P ′ a P ′ d P ′ b. Given this, one can verify that,
for each possible ranking of these alternatives in P ′, either case 1 or 2 happens. For example, if
b P ′ c P ′ a P ′ d, case 2 happens with B1 = {a, b} and B2 = {c, d}.

5.3 Proof of Proposition 2

We prove the contrapositive statement: Any irregular domain is not path-nested. Let P, P ′ ∈
D be such that a P b P c P d and b P ′ d P ′ a P ′ c. The other case is similar. Suppose D is
path-nested and let P = P1, P2, · · · , PM = P ′ be a nested path. Let the ranking of a, b, c, d be
changed for the first time from Pm to Pm+1. To simplify notation, let A1 = FB1(Pm, Pm+1)

and A2 = FB2(Pm, Pm+1). First, we claim {a, b, c, d} ⊂ A1∪A2. To see this, suppose A1∪A2

contains only a proper subset of {a, b, c, d}, say d 6∈ A1 ∪ A2. Then, by definition of path-
nestedness, the ranking between a and d will not be reversed along the path and hence a P ′ d:
contradiction. Second, given {a, b, c, d} ⊂ A1 ∪ A2, we have a ∈ A1 and d ∈ A2. Then, we
need to consider three cases: (i) b ∈ A1 and c ∈ A2, (ii) b, c ∈ A1, and (iii) b, c,∈ A2. For
case (i), by definition of path-nestedness, c Pm+1 b and the ranking between c and b will not be
reversed along the path. Hence c P ′ b: contradiction. Similar contradictions can be found for
the other two cases, which complete the proof.

5.4 Proof of Proposition 3

Let D ⊂ P denote a maximally regular domain. Pick arbitrary P, P ′ ∈ D, we show the
existence of a nested path P = P1, P2, · · · , PM = P ′ ∈ D. We show the identification of P2

and, ∀m = 3, · · · ,M , Pm can be identified by replacing the role of P1 below with Pm−1.
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Let A1, · · · , AK be the finest partition of A such that all these blocks cluster in both P1 and
PM and they are ranked in the same way. Such a partition uniquely exists. Let Ak be the first
block such that |Ak| > 2. Then, treating Ak as B in Proposition 1, then the regularity of D
implies that either case 1 or case 2 happens. Moreover, since the partition is the finest, case 1 is
impossible. Hence let {B1, B2} be the corresponding partition of Ak and let B1 P1 B2. Then,
let P2 be the same as P1 except for a flip between B1 and B2. What remains is to prove P2 ∈ D.
Suppose not. Then the fact that D is maximally regular implies the existence of P̃ ∈ D such
that P2 and P̃ form a situation illustrated by case 3 in Proposition 1. However, if this is true, is
it easy to see that P1 and P̃ also form such a situation, which contradicts the regularity of D.
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